阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

Hadoop2.2+Mahout0.9实战

223次阅读
没有评论

共计 11071 个字符,预计需要花费 28 分钟才能阅读完成。

版本:Hadoop2.2.0,mahout0.9。

使用 mahout 的 org.apache.mahout.cf.taste.hadoop.item.RecommenderJob 进行测试。

首先说明下,如果使用官网提供的下载 hadoop2.2.0 以及 mahout0.9 进行调用 mahout 的相关算法会报错。一般报错如下:

java.lang.IncompatibleClassChangeError: Found interface org.apache.hadoop.mapreduce.JobContext, but class was expected
 at org.apache.mahout.common.HadoopUtil.getCustomJobName(HadoopUtil.java:174)
 at org.apache.mahout.common.AbstractJob.prepareJob(AbstractJob.java:614)
 at org.apache.mahout.cf.taste.hadoop.preparation.PreparePreferenceMatrixJob.run(PreparePreferenceMatrixJob.java:73)
 at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)

这个是因为目前 mahout 只支持 hadoop1 的缘故。在这里可以找到解决方法:https://issues.apache.org/jira/browse/MAHOUT-1329。主要就是修改 pom 文件,修改 mahout 的依赖。

大家可以下载修改后的源码包

1、(Mahout0.9 源码(支持 Hadoop2))

2、自己编译 Mahout(mvn clean install -Dhadoop2 -Dhadoop.2.version=2.2.0 -DskipTests),或者直接下载已经编译好的 jar 包。

—————————————— 分割线 ——————————————

FTP 地址:ftp://ftp1.linuxidc.com

用户名:ftp1.linuxidc.com

密码:www.linuxidc.com

在 2014 年 LinuxIDC.com\4 月 \Hadoop2.2+Mahout0.9 实战

下载方法见 http://www.linuxidc.com/Linux/2013-10/91140.htm

—————————————— 分割线 ——————————————

接着,按照这篇文章建立 eclipse 的环境:http://blog.csdn.net/fansy1990/article/details/22896249。环境配置好了之后,需要添加 mahout 的 jar 包,下载前面提供的 jar 包,然后导入到 java 工程中。

编写下面的 java 代码:

package fz.hadoop2.util;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.yarn.conf.YarnConfiguration;

public class Hadoop2Util {
 private static Configuration conf=null;
 
 private static final String YARN_RESOURCE=”node31:8032″;
 private static final String DEFAULT_FS=”hdfs://node31:9000″;
 
 public static Configuration getConf(){
  if(conf==null){
   conf = new YarnConfiguration();
   conf.set(“fs.defaultFS”, DEFAULT_FS);
   conf.set(“mapreduce.framework.name”, “yarn”);
   conf.set(“yarn.resourcemanager.address”, YARN_RESOURCE);
  }
  return conf;
 }
}

===============================================

相关阅读

Ubuntu 13.04 上搭建 Hadoop 环境 http://www.linuxidc.com/Linux/2013-06/86106.htm

Ubuntu 12.10 +Hadoop 1.2.1 版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm

Ubuntu 上搭建 Hadoop 环境(单机模式 + 伪分布模式)http://www.linuxidc.com/Linux/2013-01/77681.htm

Ubuntu 下 Hadoop 环境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm

单机版搭建 Hadoop 环境图文教程详解 http://www.linuxidc.com/Linux/2012-02/53927.htm

搭建 Hadoop 环境(在 Winodws 环境下用虚拟机虚拟两个 Ubuntu 系统进行搭建)http://www.linuxidc.com/Linux/2011-12/48894.htm

===============================================

package fz.mahout.recommendations;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.cf.taste.hadoop.item.RecommenderJob;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import fz.hadoop2.util.Hadoop2Util;
/**
 * 测试 mahout org.apache.mahout.cf.taste.hadoop.item.RecommenderJob
 * environment:
 * mahout0.9
 * hadoop2.2
 * @author fansy
 *
 */
public class RecommenderJobTest{
 //RecommenderJob rec = null;
 Configuration conf =null;
 @Before
 public void setUp(){
 // rec= new RecommenderJob();
  conf= Hadoop2Util.getConf();
  System.out.println(“Begin to test…”);
 }
 
 @Test
 public void testMain() throws Exception{
  String[] args ={
  “-i”,”hdfs://node31:9000/input/user.csv”, 
        “-o”,”hdfs://node31:9000/output/rec001″, 
        “-n”,”3″,”-b”,”false”,”-s”,”SIMILARITY_EUCLIDEAN_DISTANCE”, 
        “–maxPrefsPerUser”,”7″,”–minPrefsPerUser”,”2″, 
        “–maxPrefsInItemSimilarity”,”7″, 
        “–outputPathForSimilarityMatrix”,”hdfs://node31:9000/output/matrix/rec001″,
        “–tempDir”,”hdfs://node31:9000/output/temp/rec001″};
  ToolRunner.run(conf, new RecommenderJob(), args);
 }
 
 @After
 public void cleanUp(){
 
 }
}

在前面下载好了 mahout 的 jar 包后,需要把这些 jar 包放入 Hadoop2 的 lib 目录(share/hadoop/mapreduce/lib,注意不一定一定要这个路径,其他 hadoop lib 也可以)。然后运行 RecommenderJobTest 即可。

输入文件如下:

1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

输出文件为:

Hadoop2.2+Mahout0.9 实战

最后一个 MR 日志:

2014-04-09 13:03:09,301 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) – io.sort.factor is deprecated. Instead, use mapreduce.task.io.sort.factor
2014-04-09 13:03:09,301 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) – mapred.map.child.java.opts is deprecated. Instead, use mapreduce.map.java.opts
2014-04-09 13:03:09,302 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) – io.sort.mb is deprecated. Instead, use mapreduce.task.io.sort.mb
2014-04-09 13:03:09,302 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) – mapred.task.timeout is deprecated. Instead, use mapreduce.task.timeout
2014-04-09 13:03:09,317 INFO  [main] client.RMProxy (RMProxy.java:createRMProxy(56)) – Connecting to ResourceManager at node31/192.168.0.31:8032
2014-04-09 13:03:09,460 INFO  [main] input.FileInputFormat (FileInputFormat.java:listStatus(287)) – Total input paths to process : 1
2014-04-09 13:03:09,515 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(394)) – number of splits:1
2014-04-09 13:03:09,531 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) – fs.default.name is deprecated. Instead, use fs.defaultFS
2014-04-09 13:03:09,547 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(477)) – Submitting tokens for job: job_1396479318893_0015
2014-04-09 13:03:09,602 INFO  [main] impl.YarnClientImpl (YarnClientImpl.java:submitApplication(174)) – Submitted application application_1396479318893_0015 to ResourceManager at node31/192.168.0.31:8032
2014-04-09 13:03:09,604 INFO  [main] mapreduce.Job (Job.java:submit(1272)) – The url to track the job: http://node31:8088/proxy/application_1396479318893_0015/
2014-04-09 13:03:09,604 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1317)) – Running job: job_1396479318893_0015
2014-04-09 13:03:24,170 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1338)) – Job job_1396479318893_0015 running in uber mode : false
2014-04-09 13:03:24,170 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) –  map 0% reduce 0%
2014-04-09 13:03:32,299 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) –  map 100% reduce 0%
2014-04-09 13:03:41,373 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) –  map 100% reduce 100%
2014-04-09 13:03:42,404 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1356)) – Job job_1396479318893_0015 completed successfully
2014-04-09 13:03:42,485 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1363)) – Counters: 43
 File System Counters
  FILE: Number of bytes read=306
  FILE: Number of bytes written=163713
  FILE: Number of read operations=0
  FILE: Number of large read operations=0
  FILE: Number of write operations=0
  HDFS: Number of bytes read=890
  HDFS: Number of bytes written=192
  HDFS: Number of read operations=10
  HDFS: Number of large read operations=0
  HDFS: Number of write operations=2
 Job Counters
  Launched map tasks=1
  Launched reduce tasks=1
  Data-local map tasks=1
  Total time spent by all maps in occupied slots (ms)=5798
  Total time spent by all reduces in occupied slots (ms)=6179
 Map-Reduce Framework
  Map input records=7
  Map output records=21
  Map output bytes=927
  Map output materialized bytes=298
  Input split bytes=131
  Combine input records=0
  Combine output records=0
  Reduce input groups=5
  Reduce shuffle bytes=298
  Reduce input records=21
  Reduce output records=5
  Spilled Records=42
  Shuffled Maps =1
  Failed Shuffles=0
  Merged Map outputs=1
  GC time elapsed (ms)=112
  CPU time spent (ms)=1560
  Physical memory (bytes) snapshot=346509312
  Virtual memory (bytes) snapshot=1685782528
  Total committed heap usage (bytes)=152834048
 Shuffle Errors
  BAD_ID=0
  CONNECTION=0
  IO_ERROR=0
  WRONG_LENGTH=0
  WRONG_MAP=0
  WRONG_REDUCE=0
 File Input Format Counters
  Bytes Read=572
 File Output Format Counters
  Bytes Written=192

说明:由于只测试了一个协同过滤算法的程序,其他的算法并没有测试,如果其他算法在此版本上有问题,也是可能有的。

更多 Hadoop 相关信息见 Hadoop 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=13

版本:Hadoop2.2.0,mahout0.9。

使用 mahout 的 org.apache.mahout.cf.taste.hadoop.item.RecommenderJob 进行测试。

首先说明下,如果使用官网提供的下载 hadoop2.2.0 以及 mahout0.9 进行调用 mahout 的相关算法会报错。一般报错如下:

java.lang.IncompatibleClassChangeError: Found interface org.apache.hadoop.mapreduce.JobContext, but class was expected
 at org.apache.mahout.common.HadoopUtil.getCustomJobName(HadoopUtil.java:174)
 at org.apache.mahout.common.AbstractJob.prepareJob(AbstractJob.java:614)
 at org.apache.mahout.cf.taste.hadoop.preparation.PreparePreferenceMatrixJob.run(PreparePreferenceMatrixJob.java:73)
 at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)

这个是因为目前 mahout 只支持 hadoop1 的缘故。在这里可以找到解决方法:https://issues.apache.org/jira/browse/MAHOUT-1329。主要就是修改 pom 文件,修改 mahout 的依赖。

大家可以下载修改后的源码包

1、(Mahout0.9 源码(支持 Hadoop2))

2、自己编译 Mahout(mvn clean install -Dhadoop2 -Dhadoop.2.version=2.2.0 -DskipTests),或者直接下载已经编译好的 jar 包。

—————————————— 分割线 ——————————————

FTP 地址:ftp://ftp1.linuxidc.com

用户名:ftp1.linuxidc.com

密码:www.linuxidc.com

在 2014 年 LinuxIDC.com\4 月 \Hadoop2.2+Mahout0.9 实战

下载方法见 http://www.linuxidc.com/Linux/2013-10/91140.htm

—————————————— 分割线 ——————————————

接着,按照这篇文章建立 eclipse 的环境:http://blog.csdn.net/fansy1990/article/details/22896249。环境配置好了之后,需要添加 mahout 的 jar 包,下载前面提供的 jar 包,然后导入到 java 工程中。

编写下面的 java 代码:

package fz.hadoop2.util;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.yarn.conf.YarnConfiguration;

public class Hadoop2Util {
 private static Configuration conf=null;
 
 private static final String YARN_RESOURCE=”node31:8032″;
 private static final String DEFAULT_FS=”hdfs://node31:9000″;
 
 public static Configuration getConf(){
  if(conf==null){
   conf = new YarnConfiguration();
   conf.set(“fs.defaultFS”, DEFAULT_FS);
   conf.set(“mapreduce.framework.name”, “yarn”);
   conf.set(“yarn.resourcemanager.address”, YARN_RESOURCE);
  }
  return conf;
 }
}

===============================================

相关阅读

Ubuntu 13.04 上搭建 Hadoop 环境 http://www.linuxidc.com/Linux/2013-06/86106.htm

Ubuntu 12.10 +Hadoop 1.2.1 版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm

Ubuntu 上搭建 Hadoop 环境(单机模式 + 伪分布模式)http://www.linuxidc.com/Linux/2013-01/77681.htm

Ubuntu 下 Hadoop 环境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm

单机版搭建 Hadoop 环境图文教程详解 http://www.linuxidc.com/Linux/2012-02/53927.htm

搭建 Hadoop 环境(在 Winodws 环境下用虚拟机虚拟两个 Ubuntu 系统进行搭建)http://www.linuxidc.com/Linux/2011-12/48894.htm

===============================================

package fz.mahout.recommendations;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.cf.taste.hadoop.item.RecommenderJob;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import fz.hadoop2.util.Hadoop2Util;
/**
 * 测试 mahout org.apache.mahout.cf.taste.hadoop.item.RecommenderJob
 * environment:
 * mahout0.9
 * hadoop2.2
 * @author fansy
 *
 */
public class RecommenderJobTest{
 //RecommenderJob rec = null;
 Configuration conf =null;
 @Before
 public void setUp(){
 // rec= new RecommenderJob();
  conf= Hadoop2Util.getConf();
  System.out.println(“Begin to test…”);
 }
 
 @Test
 public void testMain() throws Exception{
  String[] args ={
  “-i”,”hdfs://node31:9000/input/user.csv”, 
        “-o”,”hdfs://node31:9000/output/rec001″, 
        “-n”,”3″,”-b”,”false”,”-s”,”SIMILARITY_EUCLIDEAN_DISTANCE”, 
        “–maxPrefsPerUser”,”7″,”–minPrefsPerUser”,”2″, 
        “–maxPrefsInItemSimilarity”,”7″, 
        “–outputPathForSimilarityMatrix”,”hdfs://node31:9000/output/matrix/rec001″,
        “–tempDir”,”hdfs://node31:9000/output/temp/rec001″};
  ToolRunner.run(conf, new RecommenderJob(), args);
 }
 
 @After
 public void cleanUp(){
 
 }
}

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-20发表,共计11071字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中