共计 15831 个字符,预计需要花费 40 分钟才能阅读完成。
在许多情况下,一个用户需要了解待分析的数据,尽管这并非所要执行的分析任务 的核心内容。以统计数据集中无效记录数目的任务为例,如果发现无效记录的比例 相当高,那么就需要认真思考为何存在如此多无效记录。是所采用的检测程序存在 缺陷,还是数据集质量确实很低,包含大量无效记录?如果确定是数据集的质量问 题,则可能需要扩大数据集的规模,以增大有效记录的比例,从而进行有意义的 分析。
计数器是一种收集作业统计信息的有效手段,用于质量控制或应用级统计。计数器 还可辅助诊断系统故障。如果需要将日志信息传输到 map 或 reduce 任务,更好的 方法通常是尝试传输计数器值以监测某一特定事件是否发生。对于大型分布式作业 而言,使用计数器更为方便。首先,获取计数器值比输出日志更方便,其次,根据 计数器值统计特定事件的发生次数要比分析一堆日志文件容易得多。
————————————– 分割线 ————————————–
Ubuntu 13.04 上搭建 Hadoop 环境 http://www.linuxidc.com/Linux/2013-06/86106.htm
Ubuntu 12.10 +Hadoop 1.2.1 版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm
Ubuntu 上搭建 Hadoop 环境(单机模式 + 伪分布模式)http://www.linuxidc.com/Linux/2013-01/77681.htm
Ubuntu 下 Hadoop 环境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm
单机版搭建 Hadoop 环境图文教程详解 http://www.linuxidc.com/Linux/2012-02/53927.htm
————————————– 分割线 ————————————–
2、内置计数器
Hadoop 为每个作业维护若干内置计数器, 以描述该作业的各项指标。例如,某些计数器记录已处理的字节数和记录数,使用户可监控已处理的输入数据量和已产生的输出数据量,并以此对 job 做适当的优化。
14/06/08 15:13:35 INFO mapreduce.Job: Counters: 46
File System Counters
FILE: Number of bytes read=159
FILE: Number of bytes written=159447
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=198
HDFS: Number of bytes written=35
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Rack-local map tasks=1
Total time spent by all maps in occupied slots (ms)=3896
Total time spent by all reduces in occupied slots (ms)=9006
Map-Reduce Framework
Map input records=3
Map output records=12
Map output bytes=129
Map output materialized bytes=159
Input split bytes=117
Combine input records=0
Combine output records=0
Reduce input groups=4
Reduce shuffle bytes=159
Reduce input records=12
Reduce output records=4
Spilled Records=24
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=13
CPU time spent (ms)=3830
Physical memory (bytes) snapshot=537718784
Virtual memory (bytes) snapshot=7365263360
Total committed heap usage (bytes)=2022309888
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=81
File Output Format Counters
Bytes Written=35
计数器由其关联任务维护,并定期传到 tasktracker,再由 tasktracker 传给 jobtracker. 因此,计数器能够被全局地聚集。详见第 hadoop 权威指南第 170 页的“进度和状态的更新”小节。与其他计数器(包括用户定义的计数器)不同,内置的作业计数器实际上 由 jobtracker 维护,不必在整个网络中发送。
一个任务的计数器值每次都是完整传输的,而非自上次传输之后再继续数未完成的传输,以避免由于消息丢失而引发的错误。另外,如果一个任务在作业执行期间失 败,则相关计数器值会减小。仅当一个作业执行成功之后,计数器的值才是完整可 靠的。
3、用户定义的 Java 计数器
MapReduce 允许用户编写程序来定义计数器,计数器的值可在 mapper 或 reducer 中增加。多个计数器由一个 Java 枚举(enum) 类型来定义,以便对计数器分组。一 个作业可以定义的枚举类型数量不限,各个枚举类型所包含的字段数量也不限。枚 举类型的名称即为组的名称,枚举类型的字段就是计数器名称。计数器是全局的。换言之,MapReduce 框架将跨所有 map 和 reduce 聚集这些计数器,并在作业结束 时产生一个最终结果。
Note1:需要说明的是,不同的 hadoop 版本定义的方式会有些许差异。
(1)在 0.20.x 版本中使用 counter 很简单, 直接定义即可,如无此 counter,hadoop 会自动添加此 counter.
Counter ct = context.getCounter(“INPUT_WORDS”, “count”);
ct.increment(1);
(2)在 0.19.x 版本中, 需要定义 enum
enum MyCounter {INPUT_WORDS};
reporter.incrCounter(MyCounter.INPUT_WORDS, 1);
RunningJob job = JobClient.runJob(conf);
Counters c = job.getCounters();
long cnt = c.getCounter(MyCounter.INPUT_WORDS);
更多详情见请继续阅读下一页的精彩内容:http://www.linuxidc.com/Linux/2014-08/105649p2.htm
Notice2:使用计数器需要清楚的是它们都存储在 jobTracker 的内存里。Mapper/Reducer 任务序列化它们,连同更新状态被发送。为了运行正常且 jobTracker 不会出问题,计数器的数量应该在 10-100 个,计数器不仅仅只用来聚合 MapReduce job 的统计值。新版本的 Hadoop 限制了计数器的数量,以防给 jobTracker 带来损害。你最不想看到的事情就是由于定义上百个计数器而使 jobTracker 宕机。
下面咱们来看一个计数器的实例(以下代码请运行在 0.20.1 版本以上):
3.1 测试数据:
hello world 2013 mapreduce
hello world 2013 mapreduce
hello world 2013 mapreduce
3.2 代码:
/**
* Project Name:CDHJobs
* File Name:MapredCounter.java
* Package Name:tmp
* Date:2014-6- 8 下午 2:12:48
* Copyright (c) 2014, decli#qq.com All Rights Reserved.
*
*/
package tmp;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.CounterGroup;
import org.apache.hadoop.mapreduce.Counters;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountWithCounter {
static enum WordsNature {
STARTS_WITH_DIGIT, STARTS_WITH_LETTER, ALL
}
/**
* The map class of WordCount.
*/
public static class TokenCounterMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
/**
* The reducer class of WordCount
*/
public static class TokenCounterReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,
InterruptedException {
int sum = 0;
String token = key.toString();
if (StringUtils.isNumeric(token)) {
context.getCounter(WordsNature.STARTS_WITH_DIGIT).increment(1);
} else if (StringUtils.isAlpha(token)) {
context.getCounter(WordsNature.STARTS_WITH_LETTER).increment(1);
}
context.getCounter(WordsNature.ALL).increment(1);
for (IntWritable value : values) {
sum += value.get();
}
context.write(key, new IntWritable(sum));
}
}
/**
* The main entry point.
*/
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, “WordCountWithCounter”);
job.setJarByClass(WordCountWithCounter.class);
job.setMapperClass(TokenCounterMapper.class);
job.setReducerClass(TokenCounterReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(“/tmp/dsap/rawdata/june/a.txt”));
FileOutputFormat.setOutputPath(job, new Path(“/tmp/dsap/rawdata/june/a_result”));
int exitCode = job.waitForCompletion(true) ? 0 : 1;
Counters counters = job.getCounters();
Counter c1 = counters.findCounter(WordsNature.STARTS_WITH_DIGIT);
System.out.println(“————–>>>>: ” + c1.getDisplayName() + “: ” + c1.getValue());
// The below example shows how to get built-in counter groups that Hadoop provides basically.
for (CounterGroup group : counters) {
System.out.println(“==========================================================”);
System.out.println(“* Counter Group: ” + group.getDisplayName() + ” (” + group.getName() + “)”);
System.out.println(” number of counters in this group: ” + group.size());
for (Counter counter : group) {
System.out.println(” ++++ ” + counter.getDisplayName() + “: ” + counter.getName() + “: “
+ counter.getValue());
}
}
System.exit(exitCode);
}
}
3.3 结果与 计数器详解
运行结果下面会一并给出。Counter 有 ” 组 group” 的概念,用于表示逻辑上相同范围的所有数值。MapReduce job 提供的默认 Counter 分为 7 个组,下面逐一介绍。这里也拿上面的测试数据来做详细比对,我将会针对具体的计数器,挑选一些主要的简述一下。
… 前面省略 job 运行信息 xx 字 …
ALL=4
STARTS_WITH_DIGIT=1
STARTS_WITH_LETTER=3
————–>>>>: STARTS_WITH_DIGIT: 1
==========================================================
#MapReduce job 执行所依赖的数据来自于不同的文件系统,这个 group 表示 job 与文件系统交互的读写统计
* Counter Group: File System Counters (org.apache.hadoop.mapreduce.FileSystemCounter)
number of counters in this group: 10
#job 读取本地文件系统的文件字节数。假定我们当前 map 的输入数据都来自于 HDFS,那么在 map 阶段,这个数据应该是 0。但 reduce 在执行前,它 的输入数据是经过 shuffle 的 merge 后存储在 reduce 端本地磁盘中,所以这个数据就是所有 reduce 的总输入字节数。
++++ FILE: Number of bytes read: FILE_BYTES_READ: 159
#map 的中间结果都会 spill 到本地磁盘中,在 map 执行完后,形成最终的 spill 文件。所以 map 端这里的数据就表示 map task 往本地磁盘中总共写了多少字节。与 map 端相对应的是,reduce 端在 shuffle 时,会不断地拉取 map 端的中间结果,然后做 merge 并 不断 spill 到自己的本地磁盘中。最终形成一个单独文件,这个文件就是 reduce 的输入文件。
++++ FILE: Number of bytes written: FILE_BYTES_WRITTEN: 159447
++++ FILE: Number of read operations: FILE_READ_OPS: 0
++++ FILE: Number of large read operations: FILE_LARGE_READ_OPS: 0
++++ FILE: Number of write operations: FILE_WRITE_OPS: 0
# 整个 job 执行过程中,只有 map 端运行时,才从 HDFS 读取数据,这些数据不限于源文件内容,还包括所有 map 的 split 元数据。所以这个值应该比 FileInputFormatCounters.BYTES_READ 要略大些。
++++ HDFS: Number of bytes read: HDFS_BYTES_READ: 198
#Reduce 的最终结果都会写入 HDFS,就是一个 job 执行结果的总量。
++++ HDFS: Number of bytes written: HDFS_BYTES_WRITTEN: 35
++++ HDFS: Number of read operations: HDFS_READ_OPS: 6
++++ HDFS: Number of large read operations: HDFS_LARGE_READ_OPS: 0
++++ HDFS: Number of write operations: HDFS_WRITE_OPS: 2
==========================================================
# 这个 group 描述与 job 调度相关的统计
* Counter Group: Job Counters (org.apache.hadoop.mapreduce.JobCounter)
number of counters in this group: 5
#Job 在被调度时,如果启动了一个 data-local(源文件的幅本在执行 map task 的 taskTracker 本地)
++++ Data-local map tasks
#当前 job 为某些 map task 的执行保留了 slot,总共保留的时间是多少
++++ FALLOW_SLOTS_MILLIS_MAPS/REDUCES
#所有 map task 占用 slot 的总时间,包含执行时间和创建 / 销毁子 JVM 的时间
++++ SLOTS_MILLIS_MAPS/REDUCES
# 此 job 启动了多少个 map task
++++ Launched map tasks: TOTAL_LAUNCHED_MAPS: 1
# 此 job 启动了多少个 reduce task
++++ Launched reduce tasks: TOTAL_LAUNCHED_REDUCES: 1
++++ Rack-local map tasks: RACK_LOCAL_MAPS: 1
++++ Total time spent by all maps in occupied slots (ms): SLOTS_MILLIS_MAPS: 3896
++++ Total time spent by all reduces in occupied slots (ms): SLOTS_MILLIS_REDUCES: 9006
==========================================================
# 这个 Counter group 包含了相当多地 job 执行细节数据。这里需要有个概念认识是:一般情况下,record 就表示一行数据,而相对地 byte 表示这行数据的大小是 多少,这里的 group 表示经过 reduce merge 后像这样的输入形式{“aaa”, [5, 8, 2, …]}。
* Counter Group: Map-Reduce Framework (org.apache.hadoop.mapreduce.TaskCounter)
number of counters in this group: 20
#所有 map task 从 HDFS 读取的文件总行数
++++ Map input records: MAP_INPUT_RECORDS: 3
#map task 的直接输出 record 是多少,就是在 map 方法中调用 context.write 的次数,也就是未经过 Combine 时的原生输出条数
++++ Map output records: MAP_OUTPUT_RECORDS: 12
# Map 的输出结果 key/value 都会被序列化到内存缓冲区中,所以这里的 bytes 指序列化后的最终字节之和
++++ Map output bytes: MAP_OUTPUT_BYTES: 129
++++ Map output materialized bytes: MAP_OUTPUT_MATERIALIZED_BYTES: 159
# #与 map task 的 split 相关的数据都会保存于 HDFS 中,而在保存时元数据也相应地存储着数据是以怎样的压缩方式放入的,它的具体类型是什么,这些额外的数据是 MapReduce 框架加入的,与 job 无关,这里记录的大小就是表示额外信息的字节大小
++++ Input split bytes: SPLIT_RAW_BYTES: 117
#Combiner 是为了减少尽量减少需要拉取和移动的数据,所以 combine 输入条数与 map 的输出条数是一致的。
++++ Combine input records: COMBINE_INPUT_RECORDS: 0
# 经过 Combiner 后,相同 key 的数据经过压缩,在 map 端自己解决了很多重复数据,表示最终在 map 端中间文件中的所有条目数
++++ Combine output records: COMBINE_OUTPUT_RECORDS: 0
#Reduce 总共读取了多少个这样的 groups
++++ Reduce input groups: REDUCE_INPUT_GROUPS: 4
#Reduce 端的 copy 线程总共从 map 端抓取了多少的中间数据,表示各个 map task 最终的中间文件总和
++++ Reduce shuffle bytes: REDUCE_SHUFFLE_BYTES: 159
#如果有 Combiner 的话,那么这里的数值就等于 map 端 Combiner 运算后的最后条数,如果没有,那么就应该等于 map 的输出条数
++++ Reduce input records: REDUCE_INPUT_RECORDS: 12
#所有 reduce 执行后输出的总条目数
++++ Reduce output records: REDUCE_OUTPUT_RECORDS: 4
#spill 过程在 map 和 reduce 端都会发生,这里统计在总共从内存往磁盘中 spill 了多少条数据
++++ Spilled Records: SPILLED_RECORDS: 24
#每个 reduce 几乎都得从所有 map 端拉取数据,每个 copy 线程拉取成功一个 map 的数据,那么增 1,所以它的总数基本等于 reduce number * map number
++++ Shuffled Maps : SHUFFLED_MAPS: 1
# copy 线程在抓取 map 端中间数据时,如果因为网络连接异常或是 IO 异常,所引起的 shuffle 错误次数
++++ Failed Shuffles: FAILED_SHUFFLE: 0
#记录着 shuffle 过程中总共经历了多少次 merge 动作
++++ Merged Map outputs: MERGED_MAP_OUTPUTS: 1
#通过 JMX 获取到执行 map 与 reduce 的子 JVM 总共的 GC 时间消耗
++++ GC time elapsed (ms): GC_TIME_MILLIS: 13
++++ CPU time spent (ms): CPU_MILLISECONDS: 3830
++++ Physical memory (bytes) snapshot: PHYSICAL_MEMORY_BYTES: 537718784
++++ Virtual memory (bytes) snapshot: VIRTUAL_MEMORY_BYTES: 7365263360
++++ Total committed heap usage (bytes): COMMITTED_HEAP_BYTES: 2022309888
==========================================================
# 这组内描述 Shuffle 过程中的各种错误情况发生次数,基本定位于 Shuffle 阶段 copy 线程抓取 map 端中间数据时的各种错误。
* Counter Group: Shuffle Errors (Shuffle Errors)
number of counters in this group: 6
#每个 map 都有一个 ID,如 attempt_201109020150_0254_m_000000_0,如果 reduce 的 copy 线程抓取过来的元数据中这个 ID 不是标准格式,那么此 Counter 增加
++++ BAD_ID: BAD_ID: 0
#表示 copy 线程建立到 map 端的连接有误
++++ CONNECTION: CONNECTION: 0
#Reduce 的 copy 线程如果在抓取 map 端数据时出现 IOException,那么这个值相应增加
++++ IO_ERROR: IO_ERROR: 0
#map 端的那个中间结果是有压缩好的有格式数据,所有它有两个 length 信息:源数据大小与压缩后数据大小。如果这两个 length 信息传输的有误(负值),那么此 Counter 增加
++++ WRONG_LENGTH: WRONG_LENGTH: 0
#每个 copy 线程当然是有目的: 为某个 reduce 抓取某些 map 的中间结果,如果当前抓取的 map 数据不是 copy 线程之前定义好的 map,那么就表示把数据拉错了
++++ WRONG_MAP: WRONG_MAP: 0
#与上面描述一致,如果抓取的数据表示它不是为此 reduce 而准备的,那还是拉错数据了。
++++ WRONG_REDUCE: WRONG_REDUCE: 0
==========================================================
# 这个 group 表示 map task 读取文件内容(总输入数据) 的统计
* Counter Group: File Input Format Counters (org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter)
number of counters in this group: 1
# Map task 的所有输入数据 (字节),等于各个 map task 的 map 方法传入的所有 value 值字节之和。
++++ Bytes Read: BYTES_READ: 81
==========================================================
## 这个 group 表示 reduce task 输出文件内容(总输出数据) 的统计
* Counter Group: File Output Format Counters (org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter)
number of counters in this group: 1
++++ Bytes Written: BYTES_WRITTEN: 35
==========================================================
# 自定义计数器的统计
* Counter Group: tmp.WordCountWithCounter$WordsNature (tmp.WordCountWithCounter$WordsNature)
number of counters in this group: 3
++++ ALL: ALL: 4
++++ STARTS_WITH_DIGIT: STARTS_WITH_DIGIT: 1
++++ STARTS_WITH_LETTER: STARTS_WITH_LETTER: 3
4、最后的问题:
如果想要在 MapReduce 中实现一个类似计数器的“全局变量”,可以在 map、reduce 中以任意数据类型、任意修改变量值,并在 main 函数中回调获取该怎么办呢?
更多 Hadoop 相关信息见Hadoop 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=13
在许多情况下,一个用户需要了解待分析的数据,尽管这并非所要执行的分析任务 的核心内容。以统计数据集中无效记录数目的任务为例,如果发现无效记录的比例 相当高,那么就需要认真思考为何存在如此多无效记录。是所采用的检测程序存在 缺陷,还是数据集质量确实很低,包含大量无效记录?如果确定是数据集的质量问 题,则可能需要扩大数据集的规模,以增大有效记录的比例,从而进行有意义的 分析。
计数器是一种收集作业统计信息的有效手段,用于质量控制或应用级统计。计数器 还可辅助诊断系统故障。如果需要将日志信息传输到 map 或 reduce 任务,更好的 方法通常是尝试传输计数器值以监测某一特定事件是否发生。对于大型分布式作业 而言,使用计数器更为方便。首先,获取计数器值比输出日志更方便,其次,根据 计数器值统计特定事件的发生次数要比分析一堆日志文件容易得多。
————————————– 分割线 ————————————–
Ubuntu 13.04 上搭建 Hadoop 环境 http://www.linuxidc.com/Linux/2013-06/86106.htm
Ubuntu 12.10 +Hadoop 1.2.1 版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm
Ubuntu 上搭建 Hadoop 环境(单机模式 + 伪分布模式)http://www.linuxidc.com/Linux/2013-01/77681.htm
Ubuntu 下 Hadoop 环境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm
单机版搭建 Hadoop 环境图文教程详解 http://www.linuxidc.com/Linux/2012-02/53927.htm
————————————– 分割线 ————————————–
2、内置计数器
Hadoop 为每个作业维护若干内置计数器, 以描述该作业的各项指标。例如,某些计数器记录已处理的字节数和记录数,使用户可监控已处理的输入数据量和已产生的输出数据量,并以此对 job 做适当的优化。
14/06/08 15:13:35 INFO mapreduce.Job: Counters: 46
File System Counters
FILE: Number of bytes read=159
FILE: Number of bytes written=159447
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=198
HDFS: Number of bytes written=35
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Rack-local map tasks=1
Total time spent by all maps in occupied slots (ms)=3896
Total time spent by all reduces in occupied slots (ms)=9006
Map-Reduce Framework
Map input records=3
Map output records=12
Map output bytes=129
Map output materialized bytes=159
Input split bytes=117
Combine input records=0
Combine output records=0
Reduce input groups=4
Reduce shuffle bytes=159
Reduce input records=12
Reduce output records=4
Spilled Records=24
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=13
CPU time spent (ms)=3830
Physical memory (bytes) snapshot=537718784
Virtual memory (bytes) snapshot=7365263360
Total committed heap usage (bytes)=2022309888
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=81
File Output Format Counters
Bytes Written=35
计数器由其关联任务维护,并定期传到 tasktracker,再由 tasktracker 传给 jobtracker. 因此,计数器能够被全局地聚集。详见第 hadoop 权威指南第 170 页的“进度和状态的更新”小节。与其他计数器(包括用户定义的计数器)不同,内置的作业计数器实际上 由 jobtracker 维护,不必在整个网络中发送。
一个任务的计数器值每次都是完整传输的,而非自上次传输之后再继续数未完成的传输,以避免由于消息丢失而引发的错误。另外,如果一个任务在作业执行期间失 败,则相关计数器值会减小。仅当一个作业执行成功之后,计数器的值才是完整可 靠的。
3、用户定义的 Java 计数器
MapReduce 允许用户编写程序来定义计数器,计数器的值可在 mapper 或 reducer 中增加。多个计数器由一个 Java 枚举(enum) 类型来定义,以便对计数器分组。一 个作业可以定义的枚举类型数量不限,各个枚举类型所包含的字段数量也不限。枚 举类型的名称即为组的名称,枚举类型的字段就是计数器名称。计数器是全局的。换言之,MapReduce 框架将跨所有 map 和 reduce 聚集这些计数器,并在作业结束 时产生一个最终结果。
Note1:需要说明的是,不同的 hadoop 版本定义的方式会有些许差异。
(1)在 0.20.x 版本中使用 counter 很简单, 直接定义即可,如无此 counter,hadoop 会自动添加此 counter.
Counter ct = context.getCounter(“INPUT_WORDS”, “count”);
ct.increment(1);
(2)在 0.19.x 版本中, 需要定义 enum
enum MyCounter {INPUT_WORDS};
reporter.incrCounter(MyCounter.INPUT_WORDS, 1);
RunningJob job = JobClient.runJob(conf);
Counters c = job.getCounters();
long cnt = c.getCounter(MyCounter.INPUT_WORDS);
更多详情见请继续阅读下一页的精彩内容:http://www.linuxidc.com/Linux/2014-08/105649p2.htm