共计 3688 个字符,预计需要花费 10 分钟才能阅读完成。
导读 | 本文主要介绍了 tensorflow2 自定义损失函数使用的隐藏坑,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧 |
Keras 的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制。当我们要自定义 fit 中的训练算法时,可以重写模型中的 train_step 方法,然后调用 fit 来训练模型。
这里以 tensorflow2 官网中的例子来说明:
import numpy as np | |
import tensorflow as tf | |
from tensorflow import keras | |
x = np.random.random((1000, 32)) | |
y = np.random.random((1000, 1)) | |
class CustomModel(keras.Model): | |
tf.random.set_seed(100) | |
def train_step(self, data): | |
# Unpack the data. Its structure depends on your model and | |
# on what you pass to `fit()`. | |
x, y = data | |
with tf.GradientTape() as tape: | |
y_pred = self(x, training=True) # Forward pass | |
# Compute the loss value | |
# (the loss function is configured in `compile()`) | |
loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses) | |
# Compute gradients | |
trainable_vars = self.trainable_variables | |
gradients = tape.gradient(loss, trainable_vars) | |
# Update weights | |
self.optimizer.apply_gradients(zip(gradients, trainable_vars)) | |
# Update metrics (includes the metric that tracks the loss) | |
self.compiled_metrics.update_state(y, y_pred) | |
# Return a dict mapping metric names to current value | |
return {m.name: m.result() for m in self.metrics} | |
# Construct and compile an instance of CustomModel | |
inputs = keras.Input(shape=(32,)) | |
outputs = keras.layers.Dense(1)(inputs) | |
model = CustomModel(inputs, outputs) | |
model.compile(optimizer="adam", loss=tf.losses.MSE, metrics=["mae"]) | |
# Just use `fit` as usual | |
model.fit(x, y, epochs=1, shuffle=False) | |
32/32 [==============================] - 0s 1ms/step - loss: 0.2783 - mae: 0.4257 | |
这里的 loss 是 tensorflow 库中实现了的损失函数,如果想自定义损失函数,然后将损失函数传入 model.compile 中,能正常按我们预想的 work 吗?
答案竟然是否定的,而且没有错误提示,只是 loss 计算不会符合我们的预期。
def custom_mse(y_true, y_pred): | |
return tf.reduce_mean((y_true - y_pred)**2, axis=-1) | |
a_true = tf.constant([1., 1.5, 1.2]) | |
a_pred = tf.constant([1., 2, 1.5]) | |
custom_mse(a_true, a_pred) | |
tf.losses.MSE(a_true, a_pred) |
以上结果证实了我们自定义 loss 的正确性,下面我们直接将自定义的 loss 置入 compile 中的 loss 参数中,看看会发生什么。
my_model = CustomModel(inputs, outputs) | |
my_model.compile(optimizer="adam", loss=custom_mse, metrics=["mae"]) | |
my_model.fit(x, y, epochs=1, shuffle=False) | |
32/32 [==============================] - 0s 820us/step - loss: 0.1628 - mae: 0.3257 |
我们看到,这里的 loss 与我们与标准的 tf.losses.MSE 明显不同。这说明我们自定义的 loss 以这种方式直接传递进 model.compile 中,是完全错误的操作。
正确运用自定义 loss 的姿势是什么呢?下面揭晓。
loss_tracker = keras.metrics.Mean(name="loss") | |
mae_metric = keras.metrics.MeanAbsoluteError(name="mae") | |
class MyCustomModel(keras.Model): | |
tf.random.set_seed(100) | |
def train_step(self, data): | |
# Unpack the data. Its structure depends on your model and | |
# on what you pass to `fit()`. | |
x, y = data | |
with tf.GradientTape() as tape: | |
y_pred = self(x, training=True) # Forward pass | |
# Compute the loss value | |
# (the loss function is configured in `compile()`) | |
loss = custom_mse(y, y_pred) | |
# loss += self.losses | |
# Compute gradients | |
trainable_vars = self.trainable_variables | |
gradients = tape.gradient(loss, trainable_vars) | |
# Update weights | |
self.optimizer.apply_gradients(zip(gradients, trainable_vars)) | |
# Compute our own metrics | |
loss_tracker.update_state(loss) | |
mae_metric.update_state(y, y_pred) | |
return {"loss": loss_tracker.result(), "mae": mae_metric.result()} | |
def metrics(self): | |
# We list our `Metric` objects here so that `reset_states()` can be | |
# called automatically at the start of each epoch | |
# or at the start of `evaluate()`. | |
# If you don't implement this property, you have to call | |
# `reset_states()` yourself at the time of your choosing. | |
return [loss_tracker, mae_metric] | |
# Construct and compile an instance of CustomModel | |
inputs = keras.Input(shape=(32,)) | |
outputs = keras.layers.Dense(1)(inputs) | |
my_model_beta = MyCustomModel(inputs, outputs) | |
my_model_beta.compile(optimizer="adam") | |
# Just use `fit` as usual | |
my_model_beta.fit(x, y, epochs=1, shuffle=False) | |
32/32 [==============================] - 0s 960us/step - loss: 0.2783 - mae: 0.4257 |
终于,通过跳过在 compile() 中传递损失函数,而在 train_step 中手动完成所有计算内容,我们获得了与之前默认 tf.losses.MSE 完全一致的输出,这才是我们想要的结果。
总结
当我们在模型中想用自定义的损失函数,不能直接传入 fit 函数,而是需要在 train_step 中手动传入,完成计算过程。到此这篇关于 tensorflow2 自定义损失函数使用的隐藏坑的文章就介绍到这了。
正文完
星哥玩云-微信公众号
