阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

分布式跟踪系统Zipkin详解

243次阅读
没有评论

共计 20763 个字符,预计需要花费 52 分钟才能阅读完成。

zipkin

分布式跟踪系统 Zipkin 详解

zipkin为分布式链路调用监控系统,聚合各业务系统调用延迟数据,达到链路调用监控跟踪。

architecture

分布式跟踪系统 Zipkin 详解
如图,在复杂的调用链路中假设存在一条调用链路响应缓慢,如何定位其中延迟高的服务呢?

  • 日志:通过分析调用链路上的每个服务日志得到结果
  • zipkin:使用 zipkinweb UI可以一眼看出延迟高的服务

分布式跟踪系统 Zipkin 详解

如图所示,各业务系统在彼此调用时,将特定的跟踪消息传递至 zipkin,zipkin 在收集到跟踪信息后将其聚合处理、存储、展示等,用户可通过web UI 方便
获得网络延迟、调用链路、系统依赖等等。

zipkin

zipkin主要涉及四个组件 collector storage search web UI

  • Collector接收各 service 传输的数据
  • Cassandra作为 Storage 的一种,也可以是 mysql 等,默认存储在内存中,配置 cassandra 可以参考这里
  • Query负责查询 Storage 中存储的数据, 提供简单的 JSON API 获取数据,主要提供给 web UI 使用
  • Web 提供简单的 web 界面

install

执行如下命令下载 jar 包

wget -O zipkin.jar 'https://search.maven.org/remote_content?g=io.zipkin.java&a=zipkin-server&v=LATEST&c=exec'

其为一个spring boot 工程,直接运行 jar

nohup java -jar zipkin.jar & 

访问 http://ip:9411
分布式跟踪系统 Zipkin 详解

terminology

使用 zipkin 涉及几个概念

  • Span: 基本工作单元,一次链路调用 (可以是 RPC,DB 等没有特定的限制) 创建一个 span,通过一个 64 位 ID 标识它,
    span 通过还有其他的数据,例如描述信息,时间戳,key-value 对的 (Annotation)tag 信息,parent-id 等, 其中 parent-id
    可以表示 span 调用链路来源,通俗的理解 span 就是一次请求信息

  • Trace: 类似于树结构的 Span 集合,表示一条调用链路,存在唯一标识

  • Annotation: 注解, 用来记录请求特定事件相关信息(例如时间),通常包含四个注解信息

    cs – Client Start, 表示客户端发起请求

    sr – Server Receive, 表示服务端收到请求

    ss – Server Send, 表示服务端完成处理,并将结果发送给客户端

    cr – Client Received, 表示客户端获取到服务端返回信息

  • BinaryAnnotation: 提供一些额外信息,一般已 key-value 对出现

概念说完,来看下完整的调用链路
分布式跟踪系统 Zipkin 详解

上图表示一请求链路,一条链路通过 Trace Id 唯一标识,Span标识发起的请求信息,各 span 通过parent id 关联起来,如图
分布式跟踪系统 Zipkin 详解

整个链路的依赖关系如下:
分布式跟踪系统 Zipkin 详解

完成链路调用的记录后,如何来计算调用的延迟呢,这就需要利用 Annotation 信息

分布式跟踪系统 Zipkin 详解

sr-cs 得到请求发出延迟

ss-sr 得到服务端处理延迟

cr-cs 得到真个链路完成延迟

brave

作为各调用链路,只需要负责将指定格式的数据发送给 zipkin 即可,利用 brave 可快捷完成操作。

首先导入 jar 包pom.xml

<parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>1.3.6.RELEASE</version>
    </parent>



    <!-- https://mvnrepository.com/artifact/io.zipkin.brave/brave-core -->
    <dependencies>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-aop</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>

        <dependency>
            <groupId>io.zipkin.brave</groupId>
            <artifactId>brave-core</artifactId>
            <version>3.9.0</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/io.zipkin.brave/brave-http -->
        <dependency>
            <groupId>io.zipkin.brave</groupId>
            <artifactId>brave-http</artifactId>
            <version>3.9.0</version>
        </dependency>
        <dependency>
            <groupId>io.zipkin.brave</groupId>
            <artifactId>brave-spancollector-http</artifactId>
            <version>3.9.0</version>
        </dependency>
        <dependency>
            <groupId>io.zipkin.brave</groupId>
            <artifactId>brave-web-servlet-filter</artifactId>
            <version>3.9.0</version>
        </dependency>

        <dependency>
            <groupId>io.zipkin.brave</groupId>
            <artifactId>brave-okhttp</artifactId>
            <version>3.9.0</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-api -->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.13</version>
        </dependency>
        <dependency>
            <groupId>org.apache.httpcomponents</groupId>
            <artifactId>httpclient</artifactId>
            <version>4.5.1</version>
        </dependency>

    </dependencies>

利用 spring boot 创建工程

Application.java

package com.lkl.zipkin;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

/**
 *
 * Created by liaokailin on 16/7/27.
 */
@SpringBootApplication
public class Application {


    public static void main(String[] args) {SpringApplication app = new SpringApplication(Application.class);
        app.run(args);


    }
}

建立 controller 对外提供服务

HomeController.java

RestController
@RequestMapping("/")
public class HomeController {

    @Autowired
    private OkHttpClient client;

    private  Random random = new Random();

    @RequestMapping("start")
    public String start() throws InterruptedException, IOException {int sleep= random.nextInt(100);
        TimeUnit.MILLISECONDS.sleep(sleep);
        Request request = new Request.Builder().url("http://localhost:9090/foo").get().build();
        Response response = client.newCall(request).execute();
        return "[service1 sleep" + sleep+"ms]" + response.body().toString();
    }

HomeController中利用 OkHttpClient 调用发起 http 请求。在每次发起请求时则需要通过 brave 记录 Span 信息,并异步传递给 zipkin
作为被调用方 (服务端) 也同样需要完成以上操作.

ZipkinConfig.java


package com.lkl.zipkin.config;

import com.github.kristofa.brave.Brave;
import com.github.kristofa.brave.EmptySpanCollectorMetricsHandler;
import com.github.kristofa.brave.SpanCollector;
import com.github.kristofa.brave.http.DefaultSpanNameProvider;
import com.github.kristofa.brave.http.HttpSpanCollector;
import com.github.kristofa.brave.okhttp.BraveOkHttpRequestResponseInterceptor;
import com.github.kristofa.brave.servlet.BraveServletFilter;
import okhttp3.OkHttpClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
 * Created by liaokailin on 16/7/27.
 */
@Configuration
public class ZipkinConfig {

    @Autowired
    private ZipkinProperties properties;


    @Bean
    public SpanCollector spanCollector() {HttpSpanCollector.Config config = HttpSpanCollector.Config.builder().connectTimeout(properties.getConnectTimeout()).readTimeout(properties.getReadTimeout())
                .compressionEnabled(properties.isCompressionEnabled()).flushInterval(properties.getFlushInterval()).build();
        return HttpSpanCollector.create(properties.getUrl(), config, new EmptySpanCollectorMetricsHandler());
    }


    @Bean
    public Brave brave(SpanCollector spanCollector){Brave.Builder builder = new Brave.Builder(properties.getServiceName());  // 指定 state
        builder.spanCollector(spanCollector);
        builder.traceSampler(Sampler.ALWAYS_SAMPLE);
        Brave brave = builder.build();
        return brave;
    }

    @Bean
    public BraveServletFilter braveServletFilter(Brave brave){BraveServletFilter filter = new BraveServletFilter(brave.serverRequestInterceptor(),brave.serverResponseInterceptor(),new DefaultSpanNameProvider());
        return filter;
    }

    @Bean
    public OkHttpClient okHttpClient(Brave brave){OkHttpClient client = new OkHttpClient.Builder()
                .addInterceptor(new BraveOkHttpRequestResponseInterceptor(brave.clientRequestInterceptor(), brave.clientResponseInterceptor(), new DefaultSpanNameProvider()))
                .build();
        return client;
    }
}
  • SpanCollector 配置收集器

  • Brave 各工具类的封装, 其中 builder.traceSampler(Sampler.ALWAYS_SAMPLE) 设置采样比率,0- 1 之间的百分比

  • BraveServletFilter 作为拦截器,需要 serverRequestInterceptor,serverResponseInterceptor 分别完成srss操作

  • OkHttpClient 添加拦截器,需要 clientRequestInterceptor,clientResponseInterceptor 分别完成cscr操作, 该功能由
    brave 中的 brave-okhttp 模块提供,同样的道理如果需要记录数据库的延迟只要在数据库操作前后完成 cscr即可,当然 brave 提供其封装。

以上还缺少一个配置信息ZipkinProperties.java

package com.lkl.zipkin.config;

import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Configuration;

/**
 * Created by liaokailin on 16/7/28.
 */
@Configuration
@ConfigurationProperties(prefix = "com.zipkin")
public class ZipkinProperties {

    private String serviceName;

    private String url;

    private int connectTimeout;

    private int readTimeout;

    private int flushInterval;

    private boolean compressionEnabled;

    public String getUrl() {return url;
    }

    public void setUrl(String url) {this.url = url;
    }

    public int getConnectTimeout() {return connectTimeout;
    }

    public void setConnectTimeout(int connectTimeout) {this.connectTimeout = connectTimeout;
    }

    public int getReadTimeout() {return readTimeout;
    }

    public void setReadTimeout(int readTimeout) {this.readTimeout = readTimeout;
    }

    public int getFlushInterval() {return flushInterval;
    }

    public void setFlushInterval(int flushInterval) {this.flushInterval = flushInterval;
    }

    public boolean isCompressionEnabled() {return compressionEnabled;
    }

    public void setCompressionEnabled(boolean compressionEnabled) {this.compressionEnabled = compressionEnabled;
    }

    public String getServiceName() {return serviceName;
    }

    public void setServiceName(String serviceName) {this.serviceName = serviceName;
    }
}

则可以在配置文件 application.properties 中配置相关信息

com.zipkin.serviceName=service1
com.zipkin.url=http://110.173.14.57:9411
com.zipkin.connectTimeout=6000
com.zipkin.readTimeout=6000
com.zipkin.flushInterval=1
com.zipkin.compressionEnabled=true
server.port=8080

那么其中的 service1 即完成,同样的道理,修改配置文件 (调整com.zipkin.serviceName, 以及server.port) 以及 controller 对应的方法构造若干服务

service1 中访问 http://localhost:8080/start 需要访问 http://localhost:9090/foo, 则构造server2 提供该方法

server2配置

com.zipkin.serviceName=service2
com.zipkin.url=http://110.173.14.57:9411
com.zipkin.connectTimeout=6000
com.zipkin.readTimeout=6000
com.zipkin.flushInterval=1
com.zipkin.compressionEnabled=true


server.port=9090

controller方法

    @RequestMapping("foo")
    public String foo() throws InterruptedException, IOException {Random random = new Random();
        int sleep= random.nextInt(100);
        TimeUnit.MILLISECONDS.sleep(sleep);
        Request request = new Request.Builder().url("http://localhost:9091/bar").get().build();  //service3
        Response response = client.newCall(request).execute();
        String result = response.body().string();
        request = new Request.Builder().url("http://localhost:9092/tar").get().build();  //service4
        response = client.newCall(request).execute();
       result += response.body().string();
        return "[service2 sleep" + sleep+"ms]" + result;
    }

server2 中调用 server3server4中的方法

方法分别为

 @RequestMapping("bar")
    public String bar() throws InterruptedException, IOException {//service3 method
        Random random = new Random();
        int sleep= random.nextInt(100);
        TimeUnit.MILLISECONDS.sleep(sleep);
        return "[service3 sleep" + sleep+"ms]";
    }

    @RequestMapping("tar")
    public String tar() throws InterruptedException, IOException {//service4 method
        Random random = new Random();
        int sleep= random.nextInt(1000);
        TimeUnit.MILLISECONDS.sleep(sleep);
        return "[service4 sleep" + sleep+"ms]";
    }

将工程修改后编译成 jar 形式

执行


nohup java -jar server4.jar &
nohup java -jar server3.jar &
nohup java -jar server2.jar &
nohup java -jar server1.jar &

访问 http://localhost:8080/start 后查看 zipkinweb UI

分布式跟踪系统 Zipkin 详解

点击条目可以查看具体的延迟信息

分布式跟踪系统 Zipkin 详解

服务之间的依赖为
分布式跟踪系统 Zipkin 详解

brave 源码

以上完成了基本的操作,下面将从源码角度来看下 brave 的实现

首先从 SpanCollector 来入手


 @Bean
    public SpanCollector spanCollector() {HttpSpanCollector.Config config = HttpSpanCollector.Config.builder().connectTimeout(properties.getConnectTimeout()).readTimeout(properties.getReadTimeout())
                .compressionEnabled(properties.isCompressionEnabled()).flushInterval(properties.getFlushInterval()).build();
        return HttpSpanCollector.create(properties.getUrl(), config, new EmptySpanCollectorMetricsHandler());
    }

从名称上看 HttpSpanCollector 是基于 httpspan收集器, 因此超时配置是必须的,默认给出的超时时间较长,flushInterval表示 span 的传递
间隔,实际为定时任务执行的间隔时间. 在 HttpSpanCollector 中覆写了父类方法sendSpans


@Override
  protected void sendSpans(byte[] json) throws IOException {// intentionally not closing the connection, so as to use keep-alives
    HttpURLConnection connection = (HttpURLConnection) new URL(url).openConnection();
    connection.setConnectTimeout(config.connectTimeout());
    connection.setReadTimeout(config.readTimeout());
    connection.setRequestMethod("POST");
    connection.addRequestProperty("Content-Type", "application/json");
    if (config.compressionEnabled()) {connection.addRequestProperty("Content-Encoding", "gzip");
      ByteArrayOutputStream gzipped = new ByteArrayOutputStream();
      try (GZIPOutputStream compressor = new GZIPOutputStream(gzipped)) {compressor.write(json);
      }
      json = gzipped.toByteArray();}
    connection.setDoOutput(true);
    connection.setFixedLengthStreamingMode(json.length);
    connection.getOutputStream().write(json);

    try (InputStream in = connection.getInputStream()) {while (in.read() != -1) ; // skip
    } catch (IOException e) {try (InputStream err = connection.getErrorStream()) {if (err != null) {// possible, if the connection was dropped
          while (err.read() != -1) ; // skip
        }
      }
      throw e;
    }
  }
}

可以看出最终 span 信息是通过 HttpURLConnection 实现的,同样道理就可以推理 bravebrave-spring-resttemplate-interceptors模块的实现,
只是换了一种 http 封装。

Brave

 @Bean
    public Brave brave(SpanCollector spanCollector){Brave.Builder builder = new Brave.Builder(properties.getServiceName());  // 指定 state
        builder.spanCollector(spanCollector);
        builder.traceSampler(Sampler.ALWAYS_SAMPLE);
        Brave brave = builder.build();
        return brave;
    }

Brave类包装了各种工具类

public Brave build() {return new Brave(this);
        }

创建一个Brave


private Brave(Builder builder) {serverTracer = ServerTracer.builder()
                .randomGenerator(builder.random)
                .spanCollector(builder.spanCollector)
                .state(builder.state)
                .traceSampler(builder.sampler).build();

        clientTracer = ClientTracer.builder()
                .randomGenerator(builder.random)
                .spanCollector(builder.spanCollector)
                .state(builder.state)
                .traceSampler(builder.sampler).build();

        localTracer = LocalTracer.builder()
                .randomGenerator(builder.random)
                .spanCollector(builder.spanCollector)
                .spanAndEndpoint(SpanAndEndpoint.LocalSpanAndEndpoint.create(builder.state))
                .traceSampler(builder.sampler).build();

        serverRequestInterceptor = new ServerRequestInterceptor(serverTracer);
        serverResponseInterceptor = new ServerResponseInterceptor(serverTracer);
        clientRequestInterceptor = new ClientRequestInterceptor(clientTracer);
        clientResponseInterceptor = new ClientResponseInterceptor(clientTracer);
        serverSpanAnnotationSubmitter = AnnotationSubmitter.create(SpanAndEndpoint.ServerSpanAndEndpoint.create(builder.state));
        serverSpanThreadBinder = new ServerSpanThreadBinder(builder.state);
        clientSpanThreadBinder = new ClientSpanThreadBinder(builder.state);
    }

封装了 *Tracer,*Interceptor,*Binder

其中 serverTracer当服务作为 服务端 时处理 span 信息,clientTracer当服务作为 客户端 时处理 span 信息

Filter

BraveServletFilterhttp 模块提供的拦截器功能,传递 serverRequestInterceptor,serverResponseInterceptor,spanNameProvider 等参数
其中 spanNameProvider 表示如何处理 span 的名称,默认使用 method 名称,spring boot中申明的filter bean 默认拦截所有请求

@Override
    public void doFilter(ServletRequest request, ServletResponse response, FilterChain filterChain) throws IOException, ServletException {String alreadyFilteredAttributeName = getAlreadyFilteredAttributeName();
        boolean hasAlreadyFilteredAttribute = request.getAttribute(alreadyFilteredAttributeName) != null;

        if (hasAlreadyFilteredAttribute) {// Proceed without invoking this filter...
            filterChain.doFilter(request, response);
        } else {final StatusExposingServletResponse statusExposingServletResponse = new StatusExposingServletResponse((HttpServletResponse) response);
            requestInterceptor.handle(new HttpServerRequestAdapter(new ServletHttpServerRequest((HttpServletRequest) request), spanNameProvider));

            try {filterChain.doFilter(request, statusExposingServletResponse);
            } finally {responseInterceptor.handle(new HttpServerResponseAdapter(new HttpResponse() {@Override
                    public int getHttpStatusCode() {return statusExposingServletResponse.getStatus();}
                }));
            }
        }
    }

首先来看 requestInterceptor.handle 方法,


 public void handle(ServerRequestAdapter adapter) {serverTracer.clearCurrentSpan();
        final TraceData traceData = adapter.getTraceData();

        Boolean sample = traceData.getSample();
        if (sample != null && Boolean.FALSE.equals(sample)) {serverTracer.setStateNoTracing();
            LOGGER.fine("Received indication that we should NOT trace.");
        } else {if (traceData.getSpanId() != null) {LOGGER.fine("Received span information as part of request.");
                SpanId spanId = traceData.getSpanId();
                serverTracer.setStateCurrentTrace(spanId.traceId, spanId.spanId,
                        spanId.nullableParentId(), adapter.getSpanName());
            } else {LOGGER.fine("Received no span state.");
                serverTracer.setStateUnknown(adapter.getSpanName());
            }
            serverTracer.setServerReceived();
            for(KeyValueAnnotation annotation : adapter.requestAnnotations())
            {serverTracer.submitBinaryAnnotation(annotation.getKey(), annotation.getValue());
            }
        }
    }

其中 serverTracer.clearCurrentSpan() 清除当前线程上的 span 信息,调用 ThreadLocalServerClientAndLocalSpanState 中的


  @Override
    public void setCurrentServerSpan(final ServerSpan span) {if (span == null) {currentServerSpan.remove();
        } else {currentServerSpan.set(span);
        }
    }

currentServerSpanThreadLocal 对象

private final static ThreadLocal<ServerSpan> currentServerSpan = new ThreadLocal<ServerSpan>() {

回到 ServerRequestInterceptor#handle() 方法中final TraceData traceData = adapter.getTraceData()

 @Override
    public TraceData getTraceData() {final String sampled = serverRequest.getHttpHeaderValue(BraveHttpHeaders.Sampled.getName());
        if (sampled != null) {if (sampled.equals("0") || sampled.toLowerCase().equals("false")) {return TraceData.builder().sample(false).build();} else {final String parentSpanId = serverRequest.getHttpHeaderValue(BraveHttpHeaders.ParentSpanId.getName());
                final String traceId = serverRequest.getHttpHeaderValue(BraveHttpHeaders.TraceId.getName());
                final String spanId = serverRequest.getHttpHeaderValue(BraveHttpHeaders.SpanId.getName());

                if (traceId != null && spanId != null) {SpanId span = getSpanId(traceId, spanId, parentSpanId);
                    return TraceData.builder().sample(true).spanId(span).build();}
            }
        }
        return TraceData.builder().build();
    }

其中 SpanId span = getSpanId(traceId, spanId, parentSpanId) 将构造一个SpanId 对象

 private SpanId getSpanId(String traceId, String spanId, String parentSpanId) {return SpanId.builder()
            .traceId(convertToLong(traceId))
            .spanId(convertToLong(spanId))
            .parentId(parentSpanId == null ? null : convertToLong(parentSpanId)).build();}

traceId,spanId,parentId 关联起来,其中设置 parentId 方法为


public Builder parentId(@Nullable Long parentId) {if (parentId == null) {this.flags |= FLAG_IS_ROOT;
      } else {this.flags &= ~FLAG_IS_ROOT;
      }
      this.parentId = parentId;
      return this;
    }

如果 parentId 为空为根节点,则执行 this.flags |= FLAG_IS_ROOT , 因此后续在判断节点是否为根节点时,只需要执行(flags & FLAG_IS_ROOT) == FLAG_IS_ROOT 即可.

构造完 SpanId 后看

    serverTracer.setStateCurrentTrace(spanId.traceId, spanId.spanId,
                        spanId.nullableParentId(), adapter.getSpanName());

设置当前Span

 public void setStateCurrentTrace(long traceId, long spanId, @Nullable Long parentSpanId, @Nullable String name) {checkNotBlank(name, "Null or blank span name");
        spanAndEndpoint().state().setCurrentServerSpan(ServerSpan.create(traceId, spanId, parentSpanId, name));
    }

ServerSpan.create创建 Span 信息


 static ServerSpan create(long traceId, long spanId, @Nullable Long parentSpanId, String name) {Span span = new Span();
        span.setTrace_id(traceId);
        span.setId(spanId);
        if (parentSpanId != null) {span.setParent_id(parentSpanId);
        }
        span.setName(name);
        return create(span, true);
    }

构造了一个包含 Span 信息的 AutoValue_ServerSpan 对象

通过 setCurrentServerSpan 设置到当前线程上

继续看 serverTracer.setServerReceived() 方法

public void setServerReceived() {submitStartAnnotation(zipkinCoreConstants.SERVER_RECV);
    }

为当前请求设置了server received event


void submitStartAnnotation(String annotationName) {Span span = spanAndEndpoint().span();
        if (span != null) {
            Annotation annotation = Annotation.create(currentTimeMicroseconds(),
                annotationName,
                spanAndEndpoint().endpoint()
            );
            synchronized (span) {span.setTimestamp(annotation.timestamp);
                span.addToAnnotations(annotation);
            }
        }
    }

在这里为 Span 信息设置了 Annotation 信息, 后续的

 for(KeyValueAnnotation annotation : adapter.requestAnnotations())
            {serverTracer.submitBinaryAnnotation(annotation.getKey(), annotation.getValue());
            }

设置了 BinaryAnnotation 信息,adapter.requestAnnotations()在构造 HttpServerRequestAdapter 时已完成

 @Override
    public Collection<KeyValueAnnotation> requestAnnotations() {
        KeyValueAnnotation uriAnnotation = KeyValueAnnotation.create(TraceKeys.HTTP_URL, serverRequest.getUri().toString());
        return Collections.singleton(uriAnnotation);
    }

以上将 Span 信息 (包括 sr) 存储在当前线程中,接下来继续看 BraveServletFilter#doFilter 方法的 finally 部分


 responseInterceptor.handle(new HttpServerResponseAdapter(new HttpResponse() {@Override  // 获取 http 状态码
                    public int getHttpStatusCode() {return statusExposingServletResponse.getStatus();}
                }));

handle方法

 public void handle(ServerResponseAdapter adapter) {// We can submit this in any case. When server state is not set or
        // we should not trace this request nothing will happen.
        LOGGER.fine("Sending server send.");
        try {for(KeyValueAnnotation annotation : adapter.responseAnnotations())
            {serverTracer.submitBinaryAnnotation(annotation.getKey(), annotation.getValue());
            }
            serverTracer.setServerSend();} finally {serverTracer.clearCurrentSpan();
        }
    }

首先配置 BinaryAnnotation 信息,然后执行 serverTracer.setServerSend, 在finally 中清除当前线程中的 Span 信息 (不管前面是否清楚成功, 最终都将执行该不走),ThreadLocal 中的数据要做到有始有终

serverTracer.setServerSend()

public void setServerSend() {if (submitEndAnnotation(zipkinCoreConstants.SERVER_SEND, spanCollector())) {spanAndEndpoint().state().setCurrentServerSpan(null);
        }
    }

终于看到 spanCollector 收集器了,说明下面将看是收集 Span 信息, 这里为 ss 注解


boolean submitEndAnnotation(String annotationName, SpanCollector spanCollector) {Span span = spanAndEndpoint().span();
        if (span == null) {return false;
        }
        Annotation annotation = Annotation.create(currentTimeMicroseconds(),
            annotationName,
            spanAndEndpoint().endpoint()
        );
        span.addToAnnotations(annotation);
        if (span.getTimestamp() != null) {span.setDuration(annotation.timestamp - span.getTimestamp());
        }
        spanCollector.collect(span);
        return true;
    }

首先获取当前线程中的 Span 信息,然后处理注解信息,通过 annotation.timestamp - span.getTimestamp() 计算延迟,
调用 spanCollector.collect(span) 进行收集 Span 信息,那么 Span 信息是同步收集的吗?肯定不是的,接着看

分布式跟踪系统 Zipkin 详解

调用 spanCollector.collect(span) 则执行 FlushingSpanCollector 中的 collect 方法


@Override
  public void collect(Span span) {metrics.incrementAcceptedSpans(1);
    if (!pending.offer(span)) {metrics.incrementDroppedSpans(1);
    }
  }

首先进行的是 metrics 统计信息,可以自定义该 SpanCollectorMetricsHandler 信息收集各指标信息, 利用如 grafana 等展示信息

pending.offer(span)span 信息存储在 BlockingQueue 中,然后通过定时任务去取出阻塞队列中的值,偷偷摸摸的上传 span 信息

定时任务利用了 Flusher 类来执行,在构造 FlushingSpanCollector 时构造了 Flusher


 static final class Flusher implements Runnable {final Flushable flushable;
    final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);

    Flusher(Flushable flushable, int flushInterval) {this.flushable = flushable;
      this.scheduler.scheduleWithFixedDelay(this, 0, flushInterval, SECONDS);
    }

    @Override
    public void run() {try {flushable.flush();
      } catch (IOException ignored) {}}
  }

创建了一个核心线程数为 1 的线程池,每间隔 flushInterval 秒执行一次 Span 信息上传,执行 flush 方法

@Override
  public void flush() {if (pending.isEmpty()) return;
    List<Span> drained = new ArrayList<Span>(pending.size());
    pending.drainTo(drained);
    if (drained.isEmpty()) return;

    int spanCount = drained.size();
    try {reportSpans(drained);
    } catch (IOException e) {metrics.incrementDroppedSpans(spanCount);
    } catch (RuntimeException e) {metrics.incrementDroppedSpans(spanCount);
    }
  }

首先将阻塞队列中的值全部取出存如集合中,最后调用 reportSpans(List<Span> drained) 抽象方法,该方法在 AbstractSpanCollector 得到覆写

@Override
  protected void reportSpans(List<Span> drained) throws IOException {byte[] encoded = codec.writeSpans(drained);
    sendSpans(encoded);
  }

转换成字节流后调用 sendSpans 抽象方法发送 Span 信息,此时就回到一开始说的 HttpSpanCollector 通过 HttpURLConnection 实现的 sendSpans 方法。

本文永久更新链接地址:http://www.linuxidc.com/Linux/2017-12/149460.htm

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-21发表,共计20763字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中