阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

HA分布式集群搭建

203次阅读
没有评论

共计 22582 个字符,预计需要花费 57 分钟才能阅读完成。

一:HA 分布式配置的优势:

1,防止由于一台 namenode 挂掉,集群失败的情形

2,适合工业生产的需求

二:HA 安装步骤:

1,安装虚拟机

1,型号:VMware_workstation_full_12.5.0.11529.exe linux 镜像:CentOS-7-x86_64-DVD-1611.iso

注意点:

1,网络选择了桥接模式(可以防止 route 总变),(台式机或服务器最好设置自己的本机的 ip 地址为静态的 ip)

2,安装过程中选择了基础建设模式(infras…),(减少内存的消耗,但又保证基本的环境的模式)

3,用户名 root  密码 root
4,网络配置使用了手动网络固定网络 ip4 地址(固定 ip)

2,linux 基本环境配置:(操作都在 root 权限下进行的)

1,验证网络服务:ping < 主机 ip> 主机 ping < 虚拟机 ip>  ping www.baidu.ok 验证 ok

备份 ip 地址:cp /etc/sysconfig/network-scripts/ifcfg-ens33 /etc/sysconfig/network-scripts/ifcfg-ens33.bak

2,防火墙设置:关闭并禁用防火墙

关闭防火墙 systemctl stop firewalld.service(cetos7 与前面系列的 iptables 不同)

   禁用防火墙:systemctl disable firewalld.service

   查看防火墙状态:firewall-cmd –state

3,设置 hosts,hostname,network

vim /etc/hostname
ha1

vim /etc/hosts
192.168.1.116    ha1
192.168.1.117    ha2
192.168.1.118    ha3
192.168.1.119    ha4

vim /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=ha1

4,安装一些必要的包:(不一定全)

yum install -y chkconfig
yum install -y Python
yum install -y bind-utils
yum install -y psmisc
yum install -y libxslt
yum install -y zlib
yum install -y sqlite
yum install -y cyrus-sasl-plain
yum install -y cyrus-sasl-gssapi
yum install -y fuse
yum install -y portmap
yum install -y fuse-libs
yum install -y RedHat-lsb

5,安装 Java 和 Scala

java 版本:jdk-7u80-linux-x64.rpm
scala 版本:scala-2.11.6.tgz

验证是否有 java:
rpm -qa|grep java 无

tar -zxf jdk-8u111-linux-x64.tar.gz
tar -zxf scala-2.11.6.tgz
mv jdk1.8.0_111 /usr/java
mv scala-2.11.6 /usr/scala

配置环境变量:
vim /etc/profile
export JAVA_HOME=/usr/java
export SCALA_HOME=/usr/scala
export PATH=$JAVA_HOME/bin:$SCALA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

6,重启,验证上述是否设置 ok : 重启 使用 vm 快照,命名为:初始化 ok java,scala, 主机名,防火墙,ip

3,Hadoop+zookeeper 集群配置

1,集群机准备

连接克隆:对 ha1 克隆出 ha2,ha3,ha4

对 ha2,ha3,ha4 修改网络地址,network, 防火墙
vim /etc/sysconfig/network-scripts/ifcfg-ens33
116 117/118/119
service network restart
vim /etc/hostname
vim /etc/sysconfig/network
systemctl disable firewalld.service

对 ha2,ha3,ha4 重启验证 ip, 网络,防火墙,分别对三台机快照,命名为:初始化 ok java,scala, 主机名,防火墙,ip

2,集群框架图

机子

Namenode

DataNode

Zookeeper

ZkFC

JournalNode

RM

DM

Ha1

1

 

1

1

1

1

 

Ha2

1

1

1

1

1

 

1

Ha3

 

1

1

 

1

 

1

Ha4

 

1

 

 

 

 

1

  3,ssh 通信:ok 后 快照 ssh ok

四台机:
ssh-keygen -t rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
chmod 600 ~/.ssh/authorized_keys

ha1 下:
scp ~/.ssh/* root@ha2:~/.ssh/
scp ~/.ssh/* root@ha3:~/.ssh/
scp ~/.ssh/* root@ha4:~/.ssh/

验证:
ssh ha2/ha3/ha4

4,zookeeper 集群配置:

1,配置环境变量

zook 安装:
tar -zxf zookeeper-3.4.8.tar.gz
mv zookeeper-3.4.8 /usr/zookeeper-3.4.8
修改配置文件:
export ZK_HOME=/usr/zookeeper-3.4.8
scp /etc/profile root@ha2:/etc/
scp /etc/profile root@ha3:/etc/
source /etc/profile

2,zoo.cfg 配置(加粗修改出)

cd /usr/zookeeper-3.4.8/conf
cp zoo_sample.cfg zoo.cfg
内容:
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just
# example sakes.
dataDir=/opt/zookeeper/datas
dataLogDir=/opt/zookeeper/logs
# the port at which the clients will connect
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to “0” to disable auto purge feature
#autopurge.purgeInterval=1
server.1=ha1:2888:3888
server.2=ha2:2888:3888
server.3=ha3:2888:3888

3,启动 zookeeper 集群:

# 三台机(ha1,ha2,ha3)
新建文件夹:
mkdir -p /opt/zookeeper/datas
mkdir -p /opt/zookeeper/logs
cd /opt/zookeeper/datas
vim myid    写 1 /2/3

# 分发给 ha2,ha3(注意 ha4 不需要)
cd /usr
scp -r zookeeper-3.4.8 root@ha2:/usr
scp -r zookeeper-3.4.8 root@ha3:/usr
# 启动(三台机)
cd $ZK_HOME/bin
zkServer.sh start
zkServer.sh status 一个 leader 和连个 follower

5,hadoop 集群配置

1,配置环境变量:

版本:hadoop-2.7.3.tar.gz

tar -zxf hadoop-2.7.3.tar.gz
mv hadoop2.7.3 /usr/hadoop2.7.3

export JAVA_HOME=/usr/java
export SCALA_HOME=/usr/scala
export HADOOP_HOME=/usr/hadoop-2.7.3
export PATH=$JAVA_HOME/bin:$SCALA_HOME/bin:$HADOOP_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
source /etc/profile

2,hadoop.env.sh 配置:

export JAVA_HOME=/usr/java
source hadoop.env.sh
hadoop version    验证 ok

3,hdfs-site.xml 配置:后续修改后发送(scp hdfs-site.xml root@ha4:/usr/hadoop-2.7.3/etc/hadoop/)

vim hdfs-site.xml
<configuration>
    <property>
            <name>dfs.nameservices</name>
            <value>mycluster</value>
    </property>
    <property>
            <name>dfs.ha.namenodes.mycluster</name>
            <value>nn1,nn2</value>
    </property>
    <property>
            <name>dfs.namenode.rpc-address.mycluster.nn1</name>
            <value>ha1:9000</value>
    </property>
    <property>
            <name>dfs.namenode.rpc-address.mycluster.nn2</name>
            <value>ha2:9000</value>
    </property>
    <property>
            <name>dfs.namenode.http-address.mycluster.nn1</name>
            <value>ha1:50070</value>
    </property>
    <property>
            <name>dfs.namenode.http-address.mycluster.nn2</name>
            <value>ha2:50070</value>
    </property>
    <property>
            <name>dfs.namenode.shared.edits.dir</name>
            <value>qjournal://ha2:8485;ha3:8485;ha4:8485/mycluster</value>
    </property>
    <property>
            <name>dfs.client.failover.proxy.provider.mycluster</name>
            <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
    <property>
            <name>dfs.ha.fencing.methods</name>
            <value>sshfence</value>
    </property>
    <property>
            <name>dfs.ha.fencing.ssh.private-key-files</name>
            <value>/root/.ssh/id_rsa</value>
    </property>
    <property>
            <name>dfs.journalnode.edits.dir</name>
            <value>/opt/jn/data</value>
    </property>
    <property>
            <name>dfs.ha.automatic-failover.enabled</name>
            <value>true</value>
    </property>
</configuration>

4,core-site.xml 配置

<configuration>
      <property>
                <name>fs.defaultFS</name>
                <value>hdfs://mycluster</value>
      </property>
      <property>
                <name>ha.zookeeper.quorum</name>
                <value>ha1:2181,ha2:2181,ha3:2181</value>
        </property>
      <property>
              <name>hadoop.tmp.dir</name>
              <value>/opt/hadoop2</value>
              <description>A base for other temporary  directories.</description>
      </property>
</configuration>

5,yarn-site.xml 配置

vim yarn-site.xml
<configuration>

<!– Site specific YARN configuration properties –>
        <property>
              <name>yarn.nodemanager.aux-services</name>
              <value>mapreduce_shuffle</value>
        </property>
        <property>                                                             
                <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
                <value>org.apache.hadoop.mapred.ShuffleHandler</value>
        </property>
        <property>
              <name>yarn.resourcemanager.hostname</name>
              <value>ha1</value>
      </property>
</configuration>

6,mapred-site.xml 配置

<configuration>         
<property> 
      <name>mapreduce.framework.name</name>
          <value>yarn</value>
</property>
</configuration>

7,slaves 配置:

vim slaves 
ha2
ha3
ha4

8,分发并启动:

# 分发
scp -r hadoop-2.7.3 root@ha2:/usr/
scp -r hadoop-2.7.3 root@ha3:/usr/
scp -r hadoop-2.7.3 root@ha4:/usr/
# 启动 JN(在 ha2,ha3,ha4)
cd sbin
./hadoop-daemon.sh start journalnode

[root@ha2 sbin]# jps
JournalNode
Jps
QuorumPeerMain(#zk 启动的线程)

#ha1:namenode 格式化
cd bin
./hdfs namenode -format
#zk 格式化
./hdfs zkfc -formatZK
# 可以查看 cd /opt/hadoop2 文件来查看元数据是否格式化正常

#ha2:namenode 格式化
1,ha1 要先启动 namenode:
./hadoop-daemon.sh start namenode
2,ha2 下
./hdfs namenode -bootstrapStandby

9,验证:http://192.168.1.116:50070/ 验证 ok   快照 ha 模式下的 hadoop+zookeeper 安装 ok

#hdfs 集群验证
[root@ha1 sbin]# ./stop-dfs.sh
Stopping namenodes on [ha1 ha2]
ha2: no namenode to stop
ha1: stopping namenode
ha2: no datanode to stop
ha3: no datanode to stop
ha4: no datanode to stop
Stopping journal nodes [ha2 ha3 ha4]
ha3: stopping journalnode
ha4: stopping journalnode
ha2: stopping journalnode
Stopping ZK Failover Controllers on NN hosts [ha1 ha2]
ha2: no zkfc to stop
ha1: no zkfc to stop
[root@ha1 sbin]# ./start-dfs.sh
ha1 下:
[root@ha1 sbin]# jps
Jps
NameNode
QuorumPeerMain
DFSZKFailoverController
[root@ha2 dfs]# jps
NameNode
DFSZKFailoverController
Jps
DataNode
JournalNode
QuorumPeerMain
[root@ha3 sbin]# jps
QuorumPeerMain
DataNode
JournalNode
Jps
[root@ha4 sbin]# jps
Jps
DataNode
JournalNode

 

配置 yarn 和 mapred
[root@ha1 sbin]# jps
NameNode
DFSZKFailoverController
Jps
QuorumPeerMain
ResourceManager
[root@ha2 hadoop]# jps
DataNode
NameNode
DFSZKFailoverController
JournalNode
NodeManager
Jps
QuorumPeerMain
[root@ha3 ~]# jps
QuorumPeerMain
DataNode
NodeManager
Jps
JournalNode
[root@ha4 ~]# jps
JournalNode
NodeManager
DataNode
Jps

更多详情见请继续阅读下一页的精彩内容 :http://www.linuxidc.com/Linux/2017-12/149908p2.htm

一,概念

hive: 是一种数据仓库,数据储存在:hdfs 上,hsql 是由替换简单的 map-reduce,hive 通过 mysql 来记录映射数据 

二,安装

1,mysql 安装:

1,检测是否有 mariadb

rpm -qa|grep mariadb
tar -zxvf mysql-5.7.18-linux-glibc2.5-x86_64.tar.gz
存在:rpm -e mariadb-libs-5.5.52-1.el7.x86_64 --nodeps

2,安装前准备:

# ha1 环境下:mysql 版本 mysql-5.7.18-linux-glibc2.5-x86_64
cp mysql-5.7.18-linux-glibc2.5-x86_64 /usr/mysql -r
# 创建用户组及用户 
groupadd mysql
useradd -r -g mysql mysql

cd /usr/local/mysql
mkdir data
chown -R mysql:mysql /usr/mysql 
# 验证权限:
ls -trhla
# 创建配置文件:
vim /etc/my.conf    # 一开始并不存在 
basedir=/usr/local/mysql/
datadir/usr/local/mysql/data
scoket=/tmp/mysql.sock
user=mysql
symbolic-links=0
[mysqld_safe]
log-error=/var/log/mysqld.log
pid-fils=/var/run/mysqld/mysqld.pid
# 创建文件夹 
cd /var/run
mkdir mysqld
cd mysqld
vim mysqld.pid    # 什么都不用写,退出 
chown -R mysql:mysql /var/run/mysqld

3,配置 mysql:

# 初始化:
cd /usr/local/mysql/bin
./mysqld --initialize
生成初始密码:gctlsOja8<%0

# 添加自启动脚本服务 
chown -R mysql:mysql /usr/local/mysql
cp support-files/mysql.server /etc/init.d/mysql
service mysql start
进程查看:ps -ef | grep mysql

# 登录 
mysql    ./mysql -u root -p    输入密码

# 修改密码    
set password=password("123456");# 客户端远程连接 mysql 服务器问题:
grant all privileges on *.* to root@'%' identified by '1234567';
flush privileges;(sql 语句记得加分号啊)# 解决 root 权限访问所有数据库的问题 
grant all privileges on *.* to 'root'@'Master' identified by '123456' with grant option;( 连接权限的问题)flush privileges;

# 创建 hive 数据库 
create database hive default charset utf8 collate utf8_general_ci;

# 设置 mysql 自启动 
cd /etc/init.d
chmod +x mysql
chkconfig --add mysql
chkconfig --list(3 到 5 都为开,则添加成功)# 配置环境变量:
vim /etc/profile 
export MYSQL_HOME=/usr/local/mysql
export PATH=$JAVA_HOME/bin:$MYSQL_HOME/bin:$PATH
source /etc/profile

# 验证:ok
reboot
netstat -na |grep 3306
mysql -u root -p123456

2,hive 安装 (hive-2.1.1)

1,安装前配置

1,启动 Hadoop    前提先启动 zk
cd $ZK_HOME/bin
zkServer.sh start
    在 namenode 启动 start-all.sh
2,可以放在任一台 hadoop 集群中
3,解压 tar -zxf apache-hive-2.1.1-bin.tar.gz
4,mv apache-hive-2.1.1-bin /usr/hive-2.1.1
mv mysql-connector-java-5.1.42-bin.jar /usr/hive-2.1.1/lib
5,环境变量设置
vim /etc/profie
export HIVE_HOME=/usr/hive-2.1.1
export PATH=$PATH:$HIVE_HOME/bin
export CLASSPATH=$CLASSPATH:$HIVE_HOME/bin
$source /etc/profile

2,hive-env.sh 配置

cd /app/soft/hive-2.1.1/conf
cp hive-env.sh.template hive-env.sh
vim hive-env.sh 
export HADOOP_HOME=/usr/hadoop-2.7.3
export HIVE_CONF_DIR=/usr/hive-2.1.1/conf

3,hive-site.xml 配置

touch hive-site.xml
vim hive-site.xml
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://ha1:3306/hive?createDatabaseIfNotExsit=true;characterEncoding=UTF-8</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>123456</value>
</property>
<property>
<name>datanucleus.readOnlyDatastore</name>
<value>false</value>
</property>
<property>
<name>datanucleus.fixedDatastore</name>
<value>false</value>
</property>
<property>
<name>datanucleus.autoCreateSchema</name>
<value>true</value>
</property>
<property>
<name>datanucleus.autoCreateTables</name>
<value>true</value>
</property>
<property>
<name>datanucleus.autoCreateColumns</name>
<value>true</value>
</property>
<property>
<name>datanucleus.autoCreateColumns</name>
<value>true</value>
</property>
<property>
<name>hive.metastore.schema.verification</name>
  <value>false</value>
</property>
</configuration>

4,启动服务 (快照 hive+mysql ok)

cd $HIVE_HOME/bin
hive --service metastore &
hive --service hiveserver2&
./hive

一:HA 分布式配置的优势:

1,防止由于一台 namenode 挂掉,集群失败的情形

2,适合工业生产的需求

二:HA 安装步骤:

1,安装虚拟机

1,型号:VMware_workstation_full_12.5.0.11529.exe linux 镜像:CentOS-7-x86_64-DVD-1611.iso

注意点:

1,网络选择了桥接模式(可以防止 route 总变),(台式机或服务器最好设置自己的本机的 ip 地址为静态的 ip)

2,安装过程中选择了基础建设模式(infras…),(减少内存的消耗,但又保证基本的环境的模式)

3,用户名 root  密码 root
4,网络配置使用了手动网络固定网络 ip4 地址(固定 ip)

2,linux 基本环境配置:(操作都在 root 权限下进行的)

1,验证网络服务:ping < 主机 ip> 主机 ping < 虚拟机 ip>  ping www.baidu.ok 验证 ok

备份 ip 地址:cp /etc/sysconfig/network-scripts/ifcfg-ens33 /etc/sysconfig/network-scripts/ifcfg-ens33.bak

2,防火墙设置:关闭并禁用防火墙

关闭防火墙 systemctl stop firewalld.service(cetos7 与前面系列的 iptables 不同)

   禁用防火墙:systemctl disable firewalld.service

   查看防火墙状态:firewall-cmd –state

3,设置 hosts,hostname,network

vim /etc/hostname
ha1

vim /etc/hosts
192.168.1.116    ha1
192.168.1.117    ha2
192.168.1.118    ha3
192.168.1.119    ha4

vim /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=ha1

4,安装一些必要的包:(不一定全)

yum install -y chkconfig
yum install -y Python
yum install -y bind-utils
yum install -y psmisc
yum install -y libxslt
yum install -y zlib
yum install -y sqlite
yum install -y cyrus-sasl-plain
yum install -y cyrus-sasl-gssapi
yum install -y fuse
yum install -y portmap
yum install -y fuse-libs
yum install -y RedHat-lsb

5,安装 Java 和 Scala

java 版本:jdk-7u80-linux-x64.rpm
scala 版本:scala-2.11.6.tgz

验证是否有 java:
rpm -qa|grep java 无

tar -zxf jdk-8u111-linux-x64.tar.gz
tar -zxf scala-2.11.6.tgz
mv jdk1.8.0_111 /usr/java
mv scala-2.11.6 /usr/scala

配置环境变量:
vim /etc/profile
export JAVA_HOME=/usr/java
export SCALA_HOME=/usr/scala
export PATH=$JAVA_HOME/bin:$SCALA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

6,重启,验证上述是否设置 ok : 重启 使用 vm 快照,命名为:初始化 ok java,scala, 主机名,防火墙,ip

3,Hadoop+zookeeper 集群配置

1,集群机准备

连接克隆:对 ha1 克隆出 ha2,ha3,ha4

对 ha2,ha3,ha4 修改网络地址,network, 防火墙
vim /etc/sysconfig/network-scripts/ifcfg-ens33
116 117/118/119
service network restart
vim /etc/hostname
vim /etc/sysconfig/network
systemctl disable firewalld.service

对 ha2,ha3,ha4 重启验证 ip, 网络,防火墙,分别对三台机快照,命名为:初始化 ok java,scala, 主机名,防火墙,ip

2,集群框架图

机子

Namenode

DataNode

Zookeeper

ZkFC

JournalNode

RM

DM

Ha1

1

 

1

1

1

1

 

Ha2

1

1

1

1

1

 

1

Ha3

 

1

1

 

1

 

1

Ha4

 

1

 

 

 

 

1

  3,ssh 通信:ok 后 快照 ssh ok

四台机:
ssh-keygen -t rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
chmod 600 ~/.ssh/authorized_keys

ha1 下:
scp ~/.ssh/* root@ha2:~/.ssh/
scp ~/.ssh/* root@ha3:~/.ssh/
scp ~/.ssh/* root@ha4:~/.ssh/

验证:
ssh ha2/ha3/ha4

4,zookeeper 集群配置:

1,配置环境变量

zook 安装:
tar -zxf zookeeper-3.4.8.tar.gz
mv zookeeper-3.4.8 /usr/zookeeper-3.4.8
修改配置文件:
export ZK_HOME=/usr/zookeeper-3.4.8
scp /etc/profile root@ha2:/etc/
scp /etc/profile root@ha3:/etc/
source /etc/profile

2,zoo.cfg 配置(加粗修改出)

cd /usr/zookeeper-3.4.8/conf
cp zoo_sample.cfg zoo.cfg
内容:
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just
# example sakes.
dataDir=/opt/zookeeper/datas
dataLogDir=/opt/zookeeper/logs
# the port at which the clients will connect
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to “0” to disable auto purge feature
#autopurge.purgeInterval=1
server.1=ha1:2888:3888
server.2=ha2:2888:3888
server.3=ha3:2888:3888

3,启动 zookeeper 集群:

# 三台机(ha1,ha2,ha3)
新建文件夹:
mkdir -p /opt/zookeeper/datas
mkdir -p /opt/zookeeper/logs
cd /opt/zookeeper/datas
vim myid    写 1 /2/3

# 分发给 ha2,ha3(注意 ha4 不需要)
cd /usr
scp -r zookeeper-3.4.8 root@ha2:/usr
scp -r zookeeper-3.4.8 root@ha3:/usr
# 启动(三台机)
cd $ZK_HOME/bin
zkServer.sh start
zkServer.sh status 一个 leader 和连个 follower

5,hadoop 集群配置

1,配置环境变量:

版本:hadoop-2.7.3.tar.gz

tar -zxf hadoop-2.7.3.tar.gz
mv hadoop2.7.3 /usr/hadoop2.7.3

export JAVA_HOME=/usr/java
export SCALA_HOME=/usr/scala
export HADOOP_HOME=/usr/hadoop-2.7.3
export PATH=$JAVA_HOME/bin:$SCALA_HOME/bin:$HADOOP_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
source /etc/profile

2,hadoop.env.sh 配置:

export JAVA_HOME=/usr/java
source hadoop.env.sh
hadoop version    验证 ok

3,hdfs-site.xml 配置:后续修改后发送(scp hdfs-site.xml root@ha4:/usr/hadoop-2.7.3/etc/hadoop/)

vim hdfs-site.xml
<configuration>
    <property>
            <name>dfs.nameservices</name>
            <value>mycluster</value>
    </property>
    <property>
            <name>dfs.ha.namenodes.mycluster</name>
            <value>nn1,nn2</value>
    </property>
    <property>
            <name>dfs.namenode.rpc-address.mycluster.nn1</name>
            <value>ha1:9000</value>
    </property>
    <property>
            <name>dfs.namenode.rpc-address.mycluster.nn2</name>
            <value>ha2:9000</value>
    </property>
    <property>
            <name>dfs.namenode.http-address.mycluster.nn1</name>
            <value>ha1:50070</value>
    </property>
    <property>
            <name>dfs.namenode.http-address.mycluster.nn2</name>
            <value>ha2:50070</value>
    </property>
    <property>
            <name>dfs.namenode.shared.edits.dir</name>
            <value>qjournal://ha2:8485;ha3:8485;ha4:8485/mycluster</value>
    </property>
    <property>
            <name>dfs.client.failover.proxy.provider.mycluster</name>
            <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
    <property>
            <name>dfs.ha.fencing.methods</name>
            <value>sshfence</value>
    </property>
    <property>
            <name>dfs.ha.fencing.ssh.private-key-files</name>
            <value>/root/.ssh/id_rsa</value>
    </property>
    <property>
            <name>dfs.journalnode.edits.dir</name>
            <value>/opt/jn/data</value>
    </property>
    <property>
            <name>dfs.ha.automatic-failover.enabled</name>
            <value>true</value>
    </property>
</configuration>

4,core-site.xml 配置

<configuration>
      <property>
                <name>fs.defaultFS</name>
                <value>hdfs://mycluster</value>
      </property>
      <property>
                <name>ha.zookeeper.quorum</name>
                <value>ha1:2181,ha2:2181,ha3:2181</value>
        </property>
      <property>
              <name>hadoop.tmp.dir</name>
              <value>/opt/hadoop2</value>
              <description>A base for other temporary  directories.</description>
      </property>
</configuration>

5,yarn-site.xml 配置

vim yarn-site.xml
<configuration>

<!– Site specific YARN configuration properties –>
        <property>
              <name>yarn.nodemanager.aux-services</name>
              <value>mapreduce_shuffle</value>
        </property>
        <property>                                                             
                <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
                <value>org.apache.hadoop.mapred.ShuffleHandler</value>
        </property>
        <property>
              <name>yarn.resourcemanager.hostname</name>
              <value>ha1</value>
      </property>
</configuration>

6,mapred-site.xml 配置

<configuration>         
<property> 
      <name>mapreduce.framework.name</name>
          <value>yarn</value>
</property>
</configuration>

7,slaves 配置:

vim slaves 
ha2
ha3
ha4

8,分发并启动:

# 分发
scp -r hadoop-2.7.3 root@ha2:/usr/
scp -r hadoop-2.7.3 root@ha3:/usr/
scp -r hadoop-2.7.3 root@ha4:/usr/
# 启动 JN(在 ha2,ha3,ha4)
cd sbin
./hadoop-daemon.sh start journalnode

[root@ha2 sbin]# jps
JournalNode
Jps
QuorumPeerMain(#zk 启动的线程)

#ha1:namenode 格式化
cd bin
./hdfs namenode -format
#zk 格式化
./hdfs zkfc -formatZK
# 可以查看 cd /opt/hadoop2 文件来查看元数据是否格式化正常

#ha2:namenode 格式化
1,ha1 要先启动 namenode:
./hadoop-daemon.sh start namenode
2,ha2 下
./hdfs namenode -bootstrapStandby

9,验证:http://192.168.1.116:50070/ 验证 ok   快照 ha 模式下的 hadoop+zookeeper 安装 ok

#hdfs 集群验证
[root@ha1 sbin]# ./stop-dfs.sh
Stopping namenodes on [ha1 ha2]
ha2: no namenode to stop
ha1: stopping namenode
ha2: no datanode to stop
ha3: no datanode to stop
ha4: no datanode to stop
Stopping journal nodes [ha2 ha3 ha4]
ha3: stopping journalnode
ha4: stopping journalnode
ha2: stopping journalnode
Stopping ZK Failover Controllers on NN hosts [ha1 ha2]
ha2: no zkfc to stop
ha1: no zkfc to stop
[root@ha1 sbin]# ./start-dfs.sh
ha1 下:
[root@ha1 sbin]# jps
Jps
NameNode
QuorumPeerMain
DFSZKFailoverController
[root@ha2 dfs]# jps
NameNode
DFSZKFailoverController
Jps
DataNode
JournalNode
QuorumPeerMain
[root@ha3 sbin]# jps
QuorumPeerMain
DataNode
JournalNode
Jps
[root@ha4 sbin]# jps
Jps
DataNode
JournalNode

 

配置 yarn 和 mapred
[root@ha1 sbin]# jps
NameNode
DFSZKFailoverController
Jps
QuorumPeerMain
ResourceManager
[root@ha2 hadoop]# jps
DataNode
NameNode
DFSZKFailoverController
JournalNode
NodeManager
Jps
QuorumPeerMain
[root@ha3 ~]# jps
QuorumPeerMain
DataNode
NodeManager
Jps
JournalNode
[root@ha4 ~]# jps
JournalNode
NodeManager
DataNode
Jps

更多详情见请继续阅读下一页的精彩内容 :http://www.linuxidc.com/Linux/2017-12/149908p2.htm

(一)HA 下配置 spark

1,spark 版本型号:spark-2.1.0-bin-Hadoop2.7

2,解压,修改配置环境变量

tar -zxvf spark-2.1.0-bin-hadoop2.7.tgz
mv spark-2.1.0-bin-hadoop2.7 /usr/spark-2.1.0

vim /etc/profile
export JAVA_HOME=/usr/java
export SCALA_HOME=/usr/scala
export HADOOP_HOME=/usr/hadoop-2.7.3
export ZK_HOME=/usr/zookeeper-3.4.8
export MYSQL_HOME=/usr/local/mysql
export HIVE_HOME=/usr/hive-2.1.1
export SPARK_HOME=/usr/spark-2.1.0
export PATH=$SPARK_HOME/bin:$HIVE_HOME/bin:$MYSQL_HOME/bin:$ZK_HOME/bin:$JAVA_HOME/bin:$SCALA_HOME/bin:$HADOOP_HOME/bin:$PATH 
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

3,修改 spark-env.sh 文件

cd $SPARK_HOME/conf 
vim spark-env.sh
# 添加 
export JAVA_HOME=/usr/java
export SCALA_HOME=/usr/scala
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=ha1:2181,ha2:2181,ha3:2181 -Dspark.deploy.zookeeper.dir=/spark"  
export HADOOP_CONF_DIR=/usr/hadoop-2.7.3/conf/etc/hadoop
export SPARK_MASTER_PORT=7077
export SPARK_EXECUTOR_INSTANCES=1
export SPARK_WORKER_INSTANCES=1
export SPARK_WORKER_CORES=1
export SPARK_WORKER_MEMORY=1024M
export SPARK_MASTER_WEBUI_PORT=8080
export SPARK_CONF_DIR=/usr/spark-2.1.0/conf

4,修改 slaves 文件

vim slaves
# 添加 
ha2
ha3
ha4

5,分发及启动

cd /usr
scp -r spark-2.1.0 root@ha4:/usr
scp -r spark-2.1.0 root@ha3:/usr
scp -r spark-2.1.0 root@ha2:/usr
scp -r spark-2.1.0 root@ha1:/usr
# 在 ha1 上 
./$SPARK_HOME/sbin/start-all.sh
#ha2,ha3 上 
./$SPARK_HOME/sbin/start-master.sh

各个节点 jps 情况:

[root@ha1 spark-2.1.0]# jps
2464 NameNode
2880 ResourceManager
2771 DFSZKFailoverController
3699 Jps
2309 QuorumPeerMain
3622 Master
[root@ha2 zookeeper-3.4.8]# jps
2706 NodeManager
3236 Jps
2485 JournalNode
3189 Worker
2375 DataNode
2586 DFSZKFailoverController
2236 QuorumPeerMain
2303 NameNode
3622 Master
[root@ha3 zookeeper-3.4.8]# jps
2258 DataNode
2466 NodeManager
2197 QuorumPeerMain
2920 Jps
2873 Worker
2331 JournalNode
3622 Master
[root@ha4 ~]# jps
2896 Jps
2849 Worker
2307 JournalNode
2443 NodeManager
2237 DataNode

6,关机,快照 sparkok

# 启动集群顺序 
#ha1,ha2,ha3
cd $ZK_HOME
./bin/zkServer.sh start
#ha1
cd $HADOOP_HOME
./sbin/start-all.sh
cd $SPARK_HOME
./sbin/start-all.sh
#ha2,ha3
./sbin/start-master.sh

Hadoop 项目之基于 CentOS7 的 Cloudera 5.10.1(CDH)的安装部署  http://www.linuxidc.com/Linux/2017-04/143095.htm

Hadoop2.7.2 集群搭建详解(高可用)http://www.linuxidc.com/Linux/2017-03/142052.htm

使用 Ambari 来部署 Hadoop 集群(搭建内网 HDP 源)http://www.linuxidc.com/Linux/2017-03/142136.htm

Ubuntu 14.04 下 Hadoop 集群安装  http://www.linuxidc.com/Linux/2017-02/140783.htm

CentOS 6.7 安装 Hadoop 2.7.2  http://www.linuxidc.com/Linux/2017-08/146232.htm

Ubuntu 16.04 上构建分布式 Hadoop-2.7.3 集群  http://www.linuxidc.com/Linux/2017-07/145503.htm

CentOS 7.3 下 Hadoop2.8 分布式集群安装与测试  http://www.linuxidc.com/Linux/2017-09/146864.htm

CentOS 7 下 Hadoop 2.6.4 分布式集群环境搭建  http://www.linuxidc.com/Linux/2017-06/144932.htm

Hadoop2.7.3+Spark2.1.0 完全分布式集群搭建过程  http://www.linuxidc.com/Linux/2017-06/144926.htm

更多 Hadoop 相关信息见 Hadoop 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=13

本文永久更新链接地址 :http://www.linuxidc.com/Linux/2017-12/149908.htm

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-21发表,共计22582字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中