共计 5577 个字符,预计需要花费 14 分钟才能阅读完成。
摘要:本文所讲述的内容,为 ElasticSearch(以下简称 ES)全文搜索引擎在实际大数据项目的应用;ES 的底层是开源库 Lucene。但是,你没法直接用 Lucene,必须自己写代码去调用它的接口。ES 是 Lucene 的封装,Java 开发,提供了 REST API 的操作接口,开箱即用,是目前全文搜索的首选;
本文的使用项目为基于 Spring Boot 的快速开发环境搭建的项目框架,使用 Spring Cloud 作为服务治理的框架;集成 ES 的过程中,考虑过使用 Spring Data 的方式集成,进行数据的对接,后面通过多方面的调研和学习讨论,最终确定了 bboss 的集成方案,一个 高性能 elasticsearch ORM 开发库使用介绍,在这里特别感谢 bboss 的作者大河和他的团队提供的帮助;
一、ES 基础
网上关于 ES 的介绍已经特别多,这里将不再进行详细介绍,只是针对几个重点进行说明;
1、Index(索引)– 可以理解为关系型数据库中的 数据库的概念
一个索引就是含有某些相似特性的文档的集合。例如,你可以有一个用户数据的索引,一个产品目录的索引,还有其他的有规则数据的索引。一个索引被一个名称 (必须都是小写) 唯一标识,并且这个名称被用于索引通过文档去执行索引,搜索,更新和删除操作。
2、Type(类型)– 可以理解为关系型数据库中的 表的概念(6.2 版本中一个 index 下只有一个 Type)
3、Document(文档)– 可以理解为关系型数据库中表的 ROW
一个文档是一个可被索引的数据的基础单元。例如,你可以给一个单独的用户创建一个文档,给单个产品创建一个文档,以及其他的单独的规则。这个文档用 JSON 格式表现,JSON 是一种普遍的网络数据交换格式。
4、Field(字段)– 相当于表中的 COLUMN
5、在一个关系型数据库里面,schema 定义了表、每个表的字段,还有表和字段之间的关系。与之对应的,在 ES 中:Mapping 定义索引下的 Type 的字段处理规则,即索引如何建立、索引类型、是否保存原始索引 JSON 文档、是否压缩原始 JSON 文档、是否需要分词处理、如何进行分词处理等。
6、ELK 是什么?
ELK=elasticsearch+Logstash+kibana
elasticsearch:后台分布式存储以及全文检索
logstash: 日志加工、“搬运工”
kibana:数据可视化展示。特别是在 DSL 的学习过程中,相当于数据库的可视化工具,实时交互操作。
ELK 架构为数据分布式存储、可视化查询和日志解析创建了一个功能强大的管理链。三者相互配合,取长补短,共同完成分布式大数据处理工作。
二、ES 能解决什么样的问题?
实际项目开发实战中,几乎每个系统都会有一个搜索的功能,当搜索做到一定程度时,维护和扩展起来难度就会慢慢变大,所以很多公司都会把搜索单独独立出一个模块,用 ElasticSearch 等来实现。近年 ElasticSearch 发展迅猛,已经超越了其最初的纯搜索引擎的角色,现在已经增加了数据聚合分析(aggregation)和可视化的特性,如果你有数百万的文档需要通过关键词进行定位时,ElasticSearch 肯定是最佳选择。当然,如果你的文档是 JSON 的,你也可以把 ElasticSearch 当作一种“NoSQL 数据库”,应用 ElasticSearch 数据聚合分析(aggregation)的特性,针对数据进行多维度的分析。
而在本文的项目中,舆情监测部分,搜索功能将是该模块的核心功能;包括条件检索,中文分词,全文搜索等功能,而 BBOSS 对于该部分功能的实现,提供了极大的便利;
三、ES 环境搭建和在项目中的应用
1、ES 集群搭建,关于 ES 集群的搭建,这里不再单独介绍,推荐的博客特别多。但有一点要注意,就是不同版本的 ES 对于功能的支持会有一些区别,要注意;
2、ES 的查询语法;项目集成 BBOSS 后,比较类似 Mybatis 框架,直接完成 DSL 语句的编写放入 XML,通过对应的 DAO 方法调用即可,所以 ES 的查询语法是 ES 学习的重点,也是 ES 进阶的重点,不同的需求对于 DSL 的查询复杂度不一,可以通过 ES 的中文官方网站进行阅读学习,并在自身搭建的 ES 集群提供的 kibana 中进行操作,ES 权威中文指南
3、项目集成 bboss
第一步、maven 引入包
<dependency>
<groupId>com.bbossgroups.plugins</groupId>
<artifactId>bboss-elasticsearch-rest</artifactId>
<version>5.0.6.3</version>
</dependency>
第二步、bboss elasticsearch 配置
运行 bboss es 需要三个配置文件,放到资源目录(resources)的 conf 目录下即可:
conf/elasticsearch.xml es 客户端配置文件
conf/httpclient.xml es http 连接池配置文件
conf/elasticsearch.properties es 参数配置文件,在上面的两个 xml 文件中引用,所以我们只需要修改 elasticsearch.properties 即可。
第三步、配置 ES 查询 DSL
在 resources 下创建配置文件 estrace/xxx.xml,配置一个 query dsl 脚本,名称为 queryServiceByCondition,我们将在后面的 ClientInterface 组件中通过 queryServiceByCondition 引用这个脚本,定义脚本内容;
加载 query dsl 文件, 并执行查询操作
@Override
public String searchInfo(JSONObject jsonObject) {
Map<String, Object> params = formatParams(jsonObject);
JSONObject result = new JSONObject();
// 创建加载配置文件的客户端工具,用来检索文档,单实例多线程安全
ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil(“esmapper/opinion.xml”);
ESDatas<OpinionInfo> esDatas = clientUtil.searchList(“act_yq_info_summary/_search”,//act_yq_info_summary 为索引名称,search 为操作的 action
“searchOpinionInfo”,//esmapper/opinion.xml 中定义的 dsl 语句
params, OpinionInfo.class);
result.put(“esDatas”, esDatas);
return JSONObject.toJSONString(result);
}
关于 BBOSS 语法的具体学习,可以移步到 高性能 elasticsearch ORM 开发库使用介绍,或者入 QQ 群 166471282
4、提供一个 mapping 设置和 dsl 的示例,仅供参考;
PUT /act_yq_info_summary/
{
“settings”:{
“number_of_shards”:6,
“index.refresh_interval”: “5s”,
“analysis” : {
“analyzer” : {
“ik” : {
“tokenizer” : “ik_max_word”
}
}
}
},
“mappings”:{
“articles”:{
“dynamic_date_formats”:[
“yyyy-MM-dd HH:mm:ss”,
“yyyyMMdd”,
“yyyy-MM-dd”
],
“dynamic”:”false”,
“properties”:{
“infoUid”:{
“type”:”text”
},
“compareId”:{
“type”:”text”
},
“plats”:{
“type”:”keyword”
},
“keyWords”:{
“type”:”keyword”
},
“infoTitle”:{
“type”:”text”,
“store”:true,
“analyzer” : “ik_max_word”
},
“infoDetail”:{
“type”:”text”,
“store”:true,
“analyzer” : “ik_max_word”
},
“infoUrl”:{
“type”:”text”
},
“pubTime”:{
“type”:”date”,
“format”:”yyyy-MM-dd HH:mm:ss”
},
“platsType”:{
“type”:”keyword”
},
“mlEmotion”:{
“type”:”keyword”
},
“userEmotion”:{
“type”:”keyword”
}
}
}
}
}
查询的 DSL
GET act_yq_info_summary/_search
{
“query”: {
“bool”: {
“must”: [{
“bool”: {
“should”: [{
“match”: {
“infoDetail”: “ 乔军 ”
}
},
{
“match”: {
“infoTitle”: “ 乔军 ”
}
}
]
}
},
{
“terms”: {
“userEmotion”: [“pos”, “neg”, “neu”]
}
}
],
“filter”: {
“bool”: {
“must”: [{
“terms”: {
“plats”: [“jingdong”, “toutiao_news”, “toutiao_ans”, “sina_blog”, “sina_com”, “bd_news”, “bd_konws”, “bd_tieba”, “zhihu_ques”, “zhihu_ans”]
}
},
{
“range”: {
“pubTime”: {
“gte”: “2016-05-01 00:00:00”,
“lte”: “2018-05-07 23:59:59”
}
}
},
{
“terms”: {
“keyWords”: [“ 蓝月亮湖南卫视中秋晚会 ”, “ 蓝月亮央视中秋晚会 ”, “ 蓝月亮旋风孝子 ”]
}
}
]
}
}
}
},
“highlight”: {
“fields”: [{
“infoTitle”: {}
},
{
“infoDetail”: {}
}
]
},
“from”: 0,
“size”: 10,
“sort”: [{
“_score”: {
“order”: “desc”
}
},
{
“pubTime”: {
“order”: “desc”
}
}
]
}
5、关于分词器,这里还是推荐 IK 分词吧,IK 分词可以设置 ik_smart 或者 ik_max_word,这里不做详解,推荐使用 ik_max_word
写在最后的话,ES 是一个非常强大的搜索引擎,要入门不是很难,但是要精通查询,查询优化,最大程度的搜索最想要的结果是有很多优化的余地的,包括评分机制,包括新版本提供的聚合功能等,只能说,加油学习吧
: