共计 7461 个字符,预计需要花费 19 分钟才能阅读完成。
1. 选择最有效率的表名顺序(只在基于规则的优化器中有效):
Oracle 的解析器按照从右到左的顺序处理 FROM 子句中的表名,FROM 子句中写在最后的表 (基础表 driving table) 将被最先处理,在 FROM 子句中包含多个表的情况下, 你必须选择记录条数最少的表作为基础表。如果有 3 个以上的表连接查询, 那就需要选择交叉表 (intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
2.WHERE 子句中的连接顺序.:
ORACLE 采用自下而上的顺序解析 WHERE 子句, 根据这个原理, 表之间的连接必须写在其他 WHERE 条件之前, 那些可以过滤掉最大数量记录的条件必须写在 WHERE 子句的末尾.
3.SELECT 子句中避免使用‘*‘:
ORACLE 在解析的过程中, 会将 ’*’ 依次转换成所有的列名, 这个工作是通过查询 数据字典完成的, 这意味着将耗费更多的 时间
4. 减少访问 数据库的次数:
ORACLE 在内部执行了许多工作: 解析 SQL 语句, 估算索引的利用率, 绑定变量 , 读数据块等;
5. 在 SQL*Plus , SQL*Forms 和 Pro* C 中重新 设置 ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 , 建议值为 200
6. 使用 DECODE函数来减少处理时间:
使用 DECODE 函数可以避免重复扫描相同记录或重复连接相同的表.
7. 整合简单, 无关联的数据库访问:
如果你有几个简单的数据库查询语句, 你可以把它们整合到一个查询中(即使它们之间没有关系)
8. 删除重复记录:
最高效的删除重复记录方法 (因为使用了 ROWID)例子:
DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID)
FROM EMP X WHERE X.EMP_NO = E.EMP_NO);
9. 用 TRUNCATE 替代 DELETE:
当删除表中的记录时, 在通常情况下, 回滚段 (rollback segments) 用来存放可以被恢复的信息. 如果你没有 COMMIT 事务,ORACLE 会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用 TRUNCATE 时, 回滚段不再存放任何可被恢复的信息. 当命令 运行后, 数据不能被恢复. 因此很少的资源被调用, 执行时间也会很短. (译者按: TRUNCATE 只在删除全表适用,TRUNCATE 是 DDL 不是 DML)
10. 尽量多使用 COMMIT:
只要有可能, 在 程序中尽量多使用 COMMIT, 这样程序的 性能得到提高,需求也会因为 COMMIT 所释放的资源而减少:
COMMIT 所释放的资源:
a. 回滚段上用于恢复数据的信息.
b. 被程序语句获得的锁
c. redo log buffer 中的空间
d. ORACLE 为 管理上述 3 种资源中的内部花费
11. 用 Where 子句替换 HAVING 子句:
避免使用 HAVING 子句, HAVING 只会在检索出所有记录之后才对 结果集进行过滤. 这个处理需要排序, 总计等操作. 如果能通过 WHERE 子句限制记录的数目, 那就能减少这方面的开销. (非 oracle 中)on、where、having 这三个都可以加条件的子句中,on 是最先执行,where 次之,having 最后,因为 on 是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where 也应该比 having 快点的,因为它过滤数据后才进行 sum,在两个表联接时才用 on 的,所以在一个表的时候,就剩下 where 跟 having 比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是 where 可以使用 rushmore 技术,而 having 就不能,在速度上后者要慢如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作 流程,where 的作用时间是在计算之前就完成的,而 having 就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on 比 where 更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由 where 进行过滤,然后再计算,计算完后再由 having 进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里
12. 减少对表的查询:
在含有子查询的 SQL 语句中, 要特别注意减少对表的查询. 例子:
SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = (SELECT
TAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604)
13. 通过内部函数提高 SQL 效率.:
复杂的 SQL 往往牺牲了执行效率. 能够掌握上面的运用函数 解决问题的方法在实际工作中是非常有意义的
14. 使用表的别名(Alias):
当在 SQL 语句中连接多个表时, 请使用表的别名并把别名前缀于每个 Column 上. 这样一来, 就可以减少解析的时间并减少那些由 Column 歧义引起的语法错误.
15. 用 EXISTS 替代 IN、用 NOT EXISTS 替代 NOT IN:
在许多基于基础表的查询中, 为了满足一个条件, 往往需要对另一个表进行联接. 在这种情况下, 使用 EXISTS(或 NOT EXISTS)通常将提高查询的效率. 在子查询中,NOT IN 子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN 都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用 NOT IN , 我们可以把它改写成外连接 (Outer Joins) 或 NOT EXISTS.
例子:
(高效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND EXISTS (SELECT‘X’ FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC =‘MELB’)
(低效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC =‘MELB’)
16. 识别 ’ 低效执行 ’ 的 SQL 语句:
虽然目前各种关于 SQL 优化的图形化 工具层出不穷, 但是写出自己的 SQL 工具来解决问题始终是一个最好的方法:
SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM V$SQLAREA
WHERE EXECUTIONS>0
AND BUFFER_GETS > 0
AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY 4 DESC;
17. 用索引提高效率:
索引是表的一个概念部分, 用来提高检索数据的效率,ORACLE 使用了一个复杂的自平衡 B -tree 结构. 通常, 通过索引查询数据比全表扫描要快. 当 ORACLE 找出执行查询和 Update 语句的最佳路径时, ORACLE 优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是, 它提供了主键 (primary key) 的唯一性验证.。那些 LONG 或 LONG RAW 数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然, 你也会发现, 在扫描小表时, 使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高, 但是我们也必须注意到它的代价. 索引需要空间来存储, 也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的 INSERT , DELETE , UPDATE 将为此多付出 4 , 5 次的磁盘 I /O . 因为索引需要额外的存储空间和处理, 那些不必要的索引反而会使查询反应时间变慢.。定期的重构索引是有必要的.:
ALTER INDEX REBUILD
18. 用 EXISTS 替换 DISTINCT:
当提交一个包含一对多表信息 (比如部门表和雇员表) 的查询时, 避免在 SELECT 子句中使用 DISTINCT. 一般可以考虑用 EXIST 替换, EXISTS 使查询更为迅速, 因为 RDBMS 核心模块将在子查询的条件一旦满足后, 立刻返回结果. 例子:
(低效):
SELECT DISTINCT DEPT_NO,DEPT_NAME FROM DEPT D , EMP E
WHERE D.DEPT_NO = E.DEPT_NO
(高效):
SELECT DEPT_NO,DEPT_NAME FROM DEPT D WHERE EXISTS (SELECT‘X’
FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO);
19. sql 语句用大写的;
因为 oracle 总是先解析 sql 语句,把小写的字母转换成大写的再执行 (20) 在 java代码中尽量少用连接符“+”连接字符串!
20. 避免在索引列上使用 NOT
通常,我们要避免在索引列上使用 NOT, NOT 会产生在和在索引列上使用函数相同的影响. 当 ORACLE”遇到”NOT, 他就会停止使用索引转而执行全表扫描.
21. 避免在索引列上使用计算
WHERE 子句中,如果索引列是函数的一部分. 优化器将不使用索引而使用全表扫描.
举例:
低效:
SELECT … FROM DEPT WHERE SAL * 12 > 25000;
高效:
SELECT … FROM DEPT WHERE SAL > 25000/12;
22. 用 >= 替代 >
高效:
SELECT * FROM EMP WHERE DEPTNO >=4
低效:
SELECT * FROM EMP WHERE DEPTNO >3
两者的区别在于, 前者 DBMS 将直接跳到第一个 DEPT 等于 4 的记录而后者将首先定位到 DEPTNO= 3 的记录并且向前扫描到第一个 DEPT 大于 3 的记录.
23. 用 UNION 替换 OR (适用于索引列)
通常情况下, 用 UNION 替换 WHERE 子句中的 OR 将会起到较好的效果. 对索引列使用 OR 将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有 column 没有被索引, 查询效率可能会因为你没有选择 OR 而降低. 在下面的例子中, LOC_ID 和 REGION 上都建有索引.
高效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10
UNION
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE REGION =“MELBOURNE”
低效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10 OR REGION =“MELBOURNE”
如果你坚持要用 OR, 那就需要返回记录最少的索引列写在最前面.
24. 用 IN 来替换 OR
这是一条简单易记的规则,但是实际的执行效果还须检验,在 ORACLE8i 下,两者的执行路径似乎是相同的.
低效:
SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30
高效
SELECT… FROM LOCATION WHERE LOC_IN IN (10,20,30);
25. 避免在索引列上使用 IS NULL 和 IS NOT NULL
避免在索引中使用任何可以为空的列,ORACLE 将无法使用该索引. 对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中. 举例: 如果唯一性索引建立在表的 A 列和 B 列上, 并且表中存在一条记录的 A,B 值为 (123,null) , ORACLE 将不接受下一条具有相同 A,B 值(123,null) 的记录 (插入). 然而如果所有的索引列都为空,ORACLE 将认为整个键值为空而空不等于空. 因此你可以插入 1000 条具有相同键值的记录, 当然它们都是空! 因为空值不存在于索引列中, 所以 WHERE 子句中对索引列进行空值比较将使 ORACLE 停用该索引
低效: (索引失效)
SELECT … FROM DEPARTMENT WHERE DEPT_CODE IS NOT NULL;
高效: (索引有效)
SELECT … FROM DEPARTMENT WHERE DEPT_CODE >=0;
26. 总是使用索引的第一个列:
如果索引是建立在多个列上, 只有在它的第一个列 (leading column) 被 where 子句引用时, 优化器才会选择使用该索引. 这也是一条简单而重要的规则,当仅引用索引的第二个列时, 优化器使用了全表扫描而忽略了索引
27. 用 UNION-ALL 替换 UNION (如果有可能的话):
当 SQL 语句需要 UNION 两个查询结果集合时, 这两个结果集合会以 UNION-ALL 的方式被合并, 然后在输出最终结果前进行排序. 如果用 UNION ALL 替代 UNION, 这样排序就不是必要了. 效率就会因此得到提高. 需要注意的是,UNION ALL 将重复输出两个结果集合中相同记录. 因此各位还是要从业务需求分析使用 UNION ALL 的可行性. UNION 将对结果集合排序, 这个操作会使用到 SORT_AREA_SIZE 这块内存. 对于这块内存的优化也是相当重要的. 下面的 SQL 可以用来查询排序的消耗量
低效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ’31-DEC-95′
UNION
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ’31-DEC-95′
高效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ’31-DEC-95′
UNION ALL
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ’31-DEC-95′
28. 用 WHERE 替代 ORDER BY:
ORDER BY 子句只在两种严格的条件下使用索引.
ORDER BY 中所有的列必须包含在相同的索引中并保持在索引中的排列顺序.
ORDER BY 中所有的列必须定义为非空.
WHERE 子句使用的索引和 ORDER BY 子句中所使用的索引不能并列.
例如:
表 DEPT 包含以下列:
DEPT_CODE PK NOT NULL
DEPT_DESC NOT NULL
DEPT_TYPE NULL
低效: (索引不被使用)
SELECT DEPT_CODE FROM DEPT ORDER BY DEPT_TYPE
高效: (使用索引)
SELECT DEPT_CODE FROM DEPT WHERE DEPT_TYPE > 0
29. 避免改变索引列的类型.:
当比较不同数据类型的数据时, ORACLE 自动对列进行简单的类型转换.
假设 EMPNO 是一个数值类型的索引列.
SELECT … FROM EMP WHERE EMPNO =‘123′
实际上, 经过 ORACLE 类型转换, 语句转化为:
SELECT … FROM EMP WHERE EMPNO = TO_NUMBER(‘123′)
幸运的是, 类型转换没有发生在索引列上, 索引的用途没有被改变.
现在, 假设 EMP_TYPE 是一个字符类型的索引列.
SELECT … FROM EMP WHERE EMP_TYPE = 123
这个语句被 ORACLE 转换为:
SELECT … FROM EMP WHERETO_NUMBER(EMP_TYPE)=123
因为内部发生的类型转换, 这个索引将不会被用到! 为了避免 ORACLE 对你的 SQL 进行隐式的类型转换, 最好把类型转换用显式表现出来. 注意当字符和数值比较时, ORACLE 会优先转换数值类型到字符类型
30. 需要当心的 WHERE 子句:
某些 SELECT 语句中的 WHERE 子句不使用索引. 这里有一些例子.
在下面的例子里,
(1)‘!=’ 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中.
(2)‘||’ 是字符连接函数. 就象其他函数那样, 停用了索引.
(3)‘+’ 是数学函数. 就象其他数学函数那样, 停用了索引.
(4)相同的索引列不能互相比较, 这将会启用全表扫描.
31.a. 如果检索数据量超过 30% 的表中记录数. 使用索引将没有显著的效率提高.
b. 在特定情况下, 使用索引也许会比全表扫描慢, 但这是同一个数量级上的区别. 而通常情况下, 使用索引比全表扫描要块几倍乃至几千倍!
32. 避免使用耗费资源的操作:
带有 DISTINCT,UNION,MINUS,INTERSECT,ORDER BY 的 SQL 语句会启动 SQL 引擎
执行耗费资源的排序(SORT) 功能. DISTINCT 需要一次排序操作, 而其他的至少需要执行两次排序. 通常, 带有 UNION, MINUS , INTERSECT 的 SQL 语句都可以用其他方式重写. 如果你的数据库的 SORT_AREA_SIZE 调配得好, 使用 UNION , MINUS, INTERSECT 也是可以考虑的, 毕竟它们的可读性很强
33. 优化 GROUP BY:
提高 GROUP BY 语句的效率, 可以通过将不需要的记录在 GROUP BY 之前过滤掉. 下面两个查询返回相同结果但第二个明显就快了许多.
低效:
SELECT JOB , AVG(SAL)
FROM EMP
GROUP by JOB
HAVING JOB =‘PRESIDENT’
OR JOB =‘MANAGER’
高效:
SELECT JOB , AVG(SAL)
FROM EMP
WHERE JOB =‘PRESIDENT’
OR JOB =‘MANAGER’
GROUP by JOB
更多 Oracle 相关信息见Oracle 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=12
本文永久更新链接地址:http://www.linuxidc.com/Linux/2016-06/132028.htm